Чтение онлайн

на главную

Жанры

...И мир загадочный за занавесом цифр. Цифровая связь
Шрифт:

 В 1842 г. Берлинский медико-хирургический институт выпускал очередную группу подготовленных в его стенах врачей. Среди них выделялся блистательный молодой человек, уже на 21-м году жизни зарекомендовавший себя зрелым ученым, сделав свое первое открытие — нейрон. Это был Герман Гельмгольц (1821–1894). Свою карьеру он решил начать с военной службы врачом-хирургом в гусарском эскадроне. Но вскоре Герман понял, что его призвание — наука, и решил расстаться с гусарской службой. Слава Гельмгольца-ученого росла удивительно быстро.

Блестящие открытия в физике, физиологии, анатомии, математике, психологии позволили ему при жизни стать "великим", признать его одним из величайших ученых XIX в. Будучи профессором университетов в Кенигсберге, Бонне, Берлине, обладая широким кругозором, разнообразием знаний, Г. Гельмгольц сделал очень много и для изучения слухового аппарата

человека.

Давайте и мы с вами рассмотрим этот сложнейший, созданный природой приемник звуковых сигналов.

Звуковая волна, пройдя через ушную раковину — наружное ухо, наталкивается на туго натянутую, перекрывающую слуховой проход барабанную перепонку (мембрану) и оказывает на нее давление. (Вспомните пластину, поставленную на пути звуковой волны!) Барабанная перепонка под давлением звука начинает колебаться. Чем сильнее звук — тем сильнее колеблется перепонка.

С другой стороны перепонки расположено среднее ухо. Здесь находятся три маленькие косточки — молоточек, наковальня и стремечко, которые как рычажный механизм передают колебания другой барабанной перепонке, отделяющей среднее ухо от внутреннего. Эти две барабанные перепонки еще не являются органами слуха: с их помощью звуковое давление преобразуется в механические колебания, которые передаются во внутреннее ухо.

Если вы видели когда-нибудь улитку, то можете легко представить строение внутреннего уха. Это костная полость, свернутая улиткой и наполненная жидкостью. Внутри костного "домика" улитки и спрятан орган слуха, или кортиев орган, названный так по имени итальянского анатома А. Корти, впервые обнаружившего его. Основой кортиева органа является очень тонкая перепонка — мембрана (опять мембрана!), соприкасающаяся с 25–30 тысячами слуховых нервных волокон. Звуковое давление от средней барабанной перепонки через жидкость в улитке передается мембране кортиевого органа. Она начинает колебаться и раздражать слуховые нервные волокна. Вот здесь-то и происходит преобразование механических колебаний мембраны в серию нервных импульсов, которые по нервным волокнам "бегут" в мозг.

— Все ясно, — воскликнет читатель, знакомый с научно-популярной литературой, — авторы подвели нас к мысли, что звуковое давление нужно преобразовать сначала с помощью тонкой пластины (мембраны) в механические колебания, а затем в импульсы, но не нервные, а электрические, как это сделал изобретатель телефона А.Г. Белл!

Верно, читатель. Рассказ о том, как Белл (1847–1922) подарил миру телефон, можно встретить во многих изданиях. Символично, что в переводе с английского слово "bell" означает колокол, звонок.

 Белл был учителем в школе глухонемых в американском городе Бостоне. Чтобы помочь людям, лишенным слуха и речи, он пытался создать слуховой аппарат, которым могли бы пользоваться его ученики. Рассказывают, что как-то раз 26-летний Александер Белл познакомился с английским физиком Ч. Уитстоном, который находился уже в весьма преклонном возрасте, и тот заинтересовал его идеей передачи звука с помощью электрического тока. Белл со всей энергией принялся за дело. Прежде всего он решил узнать, как человеческое ухо воспринимает звуки. Белл присутствовал на операциях у знакомого врача, изучал строение уха. Возможно, именно тогда у него и родилась мысль построить "электрическую гортань", издающую звуки, и "электрическое ухо", способное их воспринимать.

"Электрическое ухо" Белла состояло из картонного рупора, выполнявшего роль ушной раковины, ко дну которого была прикреплена круглая пластинка из тонкой жести — мембрана, наподобие барабанной перепонки в ухе. Точно такой же вид имела и "электрическая гортань".

Если в рупор "уха" произносили слова, его мембрана колебалась в такт звуковому давлению. Чтобы преобразовать механические колебания в колебания электрического тока, мембрана жестко соединялась с металлическим сердечником, расположенным внутри катушки. Через катушку пропускался постоянный ток от батареи. Когда мембрана колебалась, сердечник тоже колебался и тем самым изменял магнитное поле катушки. Белл был, безусловно, знаком с явлением электромагнитной индукции, открытым в 1831 г. английским физиком М. Фарадеем, и знал, что любое изменение магнитного поля катушки вызывает такое же изменение тока, протекающего в ней. Именно поэтому колебания электрического тока повторяли колебания мембраны. Таким образом, от "уха" по проводам бежал ток, являющийся электрической копией звукового давления.

В "электрической гортани" была точно такая же катушка. Но в ней протекал процесс прямо противоположный: колебания электрического тока изменяли магнитное поле катушки. Ее сердечник начинал колебаться и толкать в такт мембрану "гортани". В свою очередь, мембрана колебала воздух, а рупор усиливал эти колебания и направлял звуковую волну в настоящее человеческое ухо.

А.Г. Белл изобрел телефон в 1876 г. С тех пор в его конструкцию было внесено много усовершенствований. В частности, в современном телефоне вместо "электрического уха" Белла используется чувствительный угольный микрофон. В нем мембрана соприкасается с угольным порошком. Пока в микрофон не говорят, сопротивление порошка остается неизменным и через него от батареи в линию (провода) протекает постоянный ток. Стоит произнести в микрофон какие-нибудь слова, порошок под действием колеблющейся мембраны будет то спрессовываться, то разрыхляться. Изменение плотности порошка приведет к изменению его электрического сопротивления, а значит, и к изменению тока, текущего через порошок. И снова в проводах, идущих от микрофона, рождается электрическая копия звукового давления.

Принцип действия "электрической гортани" Белла сохранился и поныне. Правда, в современном телефонном аппарате она стала более компактной и умещается в телефонной трубке, однако сейчас встречаются и такие громкоговорители, которые гораздо крупнее своего "прадедушки".

С изобретением Белла, казалось бы, устранились все трудности перевода звукового давления в двоичный цифровой код.

Действительно, чего проще: замыкай и размыкай с помощью ключа цепь тока на выходе микрофона и получай отсчетные значения электрической копии звукового давления. Однако потребовалось еще более 50 лет, чтобы со всей математической строгостью доказать возможность замены любой непрерывной функции ее отсчетными значениями и выяснить, как часто такие значения следует брать. Сделал это в начале 30-х годов XX столетия академик В.А. Котельников. С тех пор все специалисты по передаче информации знают теорему об отсчетах непрерывной функции, носящую его имя.

Но и появление теоремы Котельникова не сразу привело к цифровому кодированию речи. Существовавшие в то время управляемые механические ключи-реле не могли переключаться быстро, скажем 12000 раз в секунду. Только развитие транзисторной техники и интегральной технологии позволило перейти к практическому решению задачи.

На обыкновенном транзисторе (с тремя электродами — базой, коллектором и эмиттером) можно строить простейший электронный ключ. Если на базу транзистора подать управляющий импульс тока так, чтобы полностью открыть его, то на время действия импульса коллектор и эмиттер окажутся как бы замкнутыми и транзистор, включенный этими электродами в цепь тока микрофона, будет подобен замкнутому ключу. В то время когда на базе транзистора управляющего импульса нет, его коллектор и эмиттер оказываются как бы разомкнутыми, транзистор в этом случае подобен разомкнутому ключу. Подавая на базу транзистора каждую секунду 12 000 управляющих импульсов (эта частота не считается высокой, так как современные импульсные генераторы могут вырабатывать в секунду и миллиарды импульсов), мы тем самым заставляем замыкаться электронный ключ через каждую 1/12000 с = 83,3 мкс и пропускать ток от микрофона. Таким образом, на выходе электрического ключа вместо непрерывного тока будут возникать его отсчетные значения.

Промышленностью выпускаются электронные ключи, более сложные по схеме, на нескольких транзисторах, но весьма компактные — в виде миниатюрных микросхем, надежные в работе и способные замыкаться до 1 млрд раз в секунду.

Обратим внимание читателей на одну важную деталь. При передаче звуков речи по телефону главное — отчетливо разбирал, слова говорящего, узнавать собеседника по голосу и улавливать интонации в речи: путаницы же, "испорченного телефона", здесь не должно быть. Оказывается, для этого достаточно в звуках речи сохранять обертоны с частотами не выше 4000 Гц, а это значит, что в секунду достаточно иметь 8 000 отсчетных значений тока, протекающего через микрофон телефонного аппарата. Другими словами, отсчетные значения, формируемые электронным ключом, должны следовать через 125 мкс.

Поделиться:
Популярные книги

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Я не дам тебе развод

Вебер Алиса
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я не дам тебе развод

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Тринадцатый II

NikL
2. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый II

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Гарем вне закона 18+

Тесленок Кирилл Геннадьевич
1. Гарем вне закона
Фантастика:
фэнтези
юмористическая фантастика
6.73
рейтинг книги
Гарем вне закона 18+

Счастье быть нужным

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Счастье быть нужным

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2