...И мир загадочный за занавесом цифр. Цифровая связь
Шрифт:
Давайте подсчитаем, какой объем памяти нужен для записи в нее фотоизображения размером с обычную почтовую открытку. Ее площадь составляет примерно 100 см2 или 10000 мм2. Так как на каждом квадратном миллиметре изображения располагается 100 элементов, а яркость каждого из них кодируется с помощью 8 бит, то легко определить, что для кодирования всей фотографий потребуется объем памяти 10000х100х8 = 8•I06 бит.
В интегральной микросхеме с объемом памяти, скажем, 30 гигабит (30•109 бит) можно вместо 3 000 книг или 100 часов непрерывного разговора, хранить около 4000 фотографий преступников.
Как
Фотография… Она запечатлевает только одно вырванное из жизни мгновение. И это "застывшее" мгновение оказалось возможным превратить в чередование 0 и 1, которые, в свою очередь, можно "упаковать" в интегральную микросхему "до востребования" или передать с помощью средств связи по назначению.
А нельзя ли "законсервировать" в электронных ячейках не одиночный стоп-кадр из многообразной жизни, а хотя бы ее небольшой "кусочек"? Представьте, вы подключили к дисплею электронную память и на его экране ожили застывшие до той поры мгновенья.
Живые картинки? Ожившие фотографии? Да ведь их впервые широкая публика увидела еще 28 декабря 1895 г. — в Париже на сеансе "синематографа" братьев Огюста и Луи Люмьеров.
Возможно, братья были знакомы с замечательным свойством глаза "видеть" исчезающее изображение еще примерно 0,1 с. Весь "секрет", таким образом, заключается в том, что если каждую секунду делать десять или более фотографий, а затем предъявлять их с такой же частотой, то человек не будет наблюдать разрывов между изображениями. На этом эффекте основаны и "синематограф" братьев Люмьеров, и современное кино, и телевидение. Заметим лишь, что для устранения неприятных мельканий на экране каждую секунду снимается и затем воспроизводится не 10, а 25 кадров.
Не правда ли, эти 25 неподвижных изображений напоминают нам отсчетные значения такого непрерывного процесса, как окружающая нас жизнь, взятые через промежутки 1/25 с?
Итак, любое подвижное изображение — это смена через каждые 40 мс одного неподвижного изображения другим. За время между сменой кадров нужно успеть просмотреть все неподвижное изображение. Как вы помните, изображение размером, скажем, с почтовую открытку содержит миллион элементарных площадок или элементов изображения размером 0,1х0,1 мм. Значит, каждый элемент изображения придется рассматривать в течение одной миллионной доли от отведенных на весь кадр 40 мс. Это непостижимо короткий отрезок времени — всего четыре десятимиллиардных доли секунды! Ясно, что ни одно механическое устройство не способно перемещать световое пятно и фотоэлемент по строкам изображения с такой скоростью.
Вы никогда не задумывались над тем, что вы видите на экране телевизора, когда усаживаетесь перед ним в свободный вечер? Изображение? Нет, в действительности на экране никакого изображения нет, абсолютно никакого! Если бы мы сумели открыть глаза на какую-то ничтожную долю секунды (а речь идет о миллионных и даже миллиардных долях), то увидели бы на экране всего одну светящуюся точку. Это она бежит с невероятной скоростью по экрану, оставляя в нашем глазу след (помните, мы видим то, чего уже нет, еще в течение 0,1 с), изменяющийся по яркости.
Что же заставляет светящуюся точку перемещаться с такой головокружительной быстротой? Электронный луч. Это он способен почти мгновенно отклоняться под действием изменяющегося магнитного поля и развертывать "картинки". Это его можно очень точно сфокусировать с помощью специальных электрических "линз". Первые опыты с электронным лучом начались в самом начале XX в. Еще в 1907 г. профессор Петербургского технологического института Б.Л. Розинг сконструировал первую электронно-лучевую трубку и получил на ней изображение, правда, невысокого качества. Изобретение в начале 30-х годов первых передающих телевизионных трубок с высоким разрешением связано с именами советских ученых, пионеров отечественного телевидения С.И. Катаева и П.В. Шмакова.
Как бы ни отличались конструкции передающих телевизионных трубок разных лет, все они в чем-то имитируют глаз. Роль хрусталика выполняет объектив, роль зрачка — диафрагма. Имеется в трубке и своя "сетчатка" — пластинка, напоминающая пчелиные соты, в ячейках которых располагаются микроскопические фотоэлементы. Конечно, их намного меньше, чем фоторецепторов в глазу: всего около 0,5 млн. Изображение, которое нужно превратить в серию электрических импульсов, проектируется с помощью объектива на эту искусственную "сетчатку".
При этом каждый микроскопический фотоэлемент (представляющий собой капельку светочувствительного серебряно-цезиевого сплава) получает свою порцию света и, если его подключить к внешней цепи, создаст ток, пропорциональный освещенности. Что касается электронного луча, то он как раз и подключает поочередно каждый из 500000 фотоэлементов к внешней цепи трубки, причем отводится ему на это всего 40 мс, пока не сменится кадр. Таким образом, на одном элементе изображения луч "задерживается" не более 80 миллиардных долей секунды (т. е. 80 нс). Сила тока во внешней цепи трубки отражает в каждый момент времени яркость соответствующего элемента изображения, спроектированного объективом на "сетчатку" передающей трубки, и является точной электрической копией передаваемого изображения.
Для превращения непрерывного электрического тока в двоичные импульсы необходимо на выходе передающей телевизионной трубки поставить АЦП. Чтобы перевести в двоичный код яркость каждого элемента изображения, отсчетные значения тока следует брать не реже чем через 80 нс. Использование АЦП с 8-разрядным кодом позволит сохранить в изображении 256 градаций яркости.
Перед приемной телевизионной трубкой — кинескопом — следует поставить ЦАП, чтобы из двоичного кода получить вновь непрерывный ток. От его силы зависит число электронов в электронном луче и, следовательно, число квантов света, выбитых лучом из люминофора — специального состава, покрывающего экран с внутренней стороны трубки. Луч в кинескопе прочерчивает строки на экране с такой же скоростью, как и передающий электронный луч, и "засвечивает" различные участки экрана пропорционально значениям тока в те или иные моменты времени, а следовательно, пропорционально освещенности передаваемых элементов изображения. Очевидно, что оба луча — и передающий, и приемный — должны начинать движение с одного и того же элемента изображения. Чтобы поддерживать одинаковые скорости перемещения лучей и начинать их перемещение с одного и того же элемента изображения, из передающей телевизионной трубки в приемную посылаются специальные управляющие импульсы, называемые импульсами синхронизации.