Чтение онлайн

на главную - закладки

Жанры

...И мир загадочный за занавесом цифр. Цифровая связь
Шрифт:

Арабские цифры не сразу приняли современный вид. Их эволюция начинается с индийских цифр брахми. Цифры 1, 2 и 3 получались из горизонтальных черточек брахми вследствие скорописной их записи. Вообще, форма цифр стабилизировалась только в XV в. в связи с появлением книгопечатания.

К концу XVIII в. арабская система нумерации победила повсеместно. И сейчас значение десяти цифр — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

понимают все народы в мире.

Внимание: конкурент!

Сколько лет мне? Двенадцать часов!

Сколько лет мне? Десятки веков!

А. аль-Хамиси

Почему вот уже на протяжении нескольких веков на всем земном шаре пользуются десятью арабскими цифрами, хотя не во все времена и не везде люди имели дело с арабской арифметикой? Прежде чем ответить на этот вопрос, познакомимся с одним замечательным свойством нашей системы счисления — позиционностью.

Изобразим какое-нибудь число, например 777. В нем один и тот же знак "7" участвует 3 раза, но когда он стоит справа, то означает семь единиц, когда в центре — семь десятков, когда слева — семь сотен. Таким образом, при записи числа цифра может иметь начертание одно и то же, а числовые значения — разные, в зависимости от места, позиции, на которой она стоит.

Такой принцип представления чисел называется поместным, или позиционным. Для записи любых сколь угодно больших чисел достаточно десяти цифр!

Каждая позиция, или разряд, числа имеет определенный "вес" (единицы, десятки, сотни и т. д.), поэтому число 777 можно расписать как

777 = 7•102+ 7•10 + 7,

т. е. как семь сотен плюс семь десятков и плюс семь единиц, а число, скажем, 4608 — следующим образом:

4608 = 4•103 + 6•102 + 0•10 + 8,

т. е. как четыре тысячи плюс шесть сотен плюс нуль десятков и плюс восемь единиц.

Если призвать на помощь алгебру и вместо чисел записать буквы, то можно получить такую общую форму представления числа:

М = аn•10n + аn-1•10n-1 + а1•10 + a0

или сокращенную — через коэффициенты, если опускать степени числа 10:

М = (аnаn-1а1a0)

"Мы все учились понемногу", поэтому должны, конечно же, знать, что число 10 является основанием системы счисления. Коэффициенты а0 (число единиц), a1 (число единиц второго разряда, т. е. десятков), а2 (число единиц третьего разряда, т. е. сотен) и т. д. могут принимать значения, не превышающие основания системы: от 0 до 9. Эти коэффициенты можно получить формальным нулем как остатки от последовательного деления числа М на основание системы, т. е. на 10:

Цифры, полученные в остатке и последнем результате деления (они выделены синим цветом), и дают искомое изображение числа в десятичной позиционной системе счисления. Такая формальная процедура, лишенная, вообще говоря, смысла для десятичной системы, незаменима, как мы увидим, для систем с другими основаниями.

Примером непозиционной системы счисления является римская нумерация. Так, в числе II единица в левой позиции имеет "вес", равный 1, а такая же единица в числе IX — "вес", равный минус 1. В числе XXXV (35) цифра X во всех позициях означает одно и то же — 10 единиц.

Основное преимущество позиционных систем счисления — удобство записи чисел и выполнения арифметических операций. Об этом мы узнаём с первого класса школы: сложение и умножение — "столбиком", деление — "углом" (для сравнения попробуйте перемножить римские числа…). По-видимому, в этом и заключена одна из основных причин того, что наша система счисления, будучи позиционной, завоевала столь прочные позиции.

Однако наблюдательный читатель может возразить: ведь две из древних систем счисления — двадцатеричная индейцев-майя и шестидесятеричная древних вавилонян — являются практически совершенными позиционными системами.

Вы правы, читатель. У вавилонян и индейцев-майя существовал позиционный принцип записи чисел. Напомним, что в арифметике майя одно и то же число, записанное в первом и во втором разрядах, отличалось одно от другого в 20 раз (т. е. в число раз, равное основанию системы); у вавилонян же прямой "клин" мог означать и 1, и числа, кратные 60, а одинаковые числа, помещенные в разные разряды, отличались в 60, 602,603 и т. п. число раз.

Более того, в 1665 г. французский математик Б. Паскаль показал, что за основание системы счисления можно принять любое число, а это значит, что каждое число можно представлять в виде комбинации степеней не числа 10, а какого-либо другого целого числа. Выберем, например, число 7:

М = аn•7n + аn-1•7n-1 + а1•7 + a0

Ясно, что значения коэффициентов а0а1….,an должны теперь быть не больше нового основания, т. е. 7: они могут принимать значения от 0 до 6.

Представим число 777 в семеричной системе, используя принцип последовательного деления его на основание этой системы:

Поделиться:
Популярные книги

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей

Совок 5

Агарев Вадим
5. Совок
Фантастика:
детективная фантастика
попаданцы
альтернативная история
6.20
рейтинг книги
Совок 5

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Великий князь

Кулаков Алексей Иванович
2. Рюрикова кровь
Фантастика:
альтернативная история
8.47
рейтинг книги
Великий князь

Ледяное проклятье

Михайлов Дем Алексеевич
4. Изгой
Фантастика:
фэнтези
9.20
рейтинг книги
Ледяное проклятье

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи

Генерал Скала и сиротка

Суббота Светлана
1. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Генерал Скала и сиротка

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Романов. Том 1 и Том 2

Кощеев Владимир
1. Романов
Фантастика:
фэнтези
попаданцы
альтернативная история
5.25
рейтинг книги
Романов. Том 1 и Том 2

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4