Чтение онлайн

на главную

Жанры

...И мир загадочный за занавесом цифр. Цифровая связь
Шрифт:

Попробуем записать уже привычное нам число (777)10 в двоичной системе счисления. Мы сможем легко сделать это, вспомнив принцип последовательного деления числа на основание системы, в данном случае числа 777 на число 2:

Представляя наше число в виде разложения по степеням

двойки и отбрасывая потом при записи сами степени, получаем его запись в двоичной системе:

(777)10 = 1•29 + 1•28 + 0•27 + 0•26 + 0•25 + 0•24 + 1•23 + 0•220•2 + 1 = (1100001001)2

Итак, в двоичной системе счисления вместо числа 777 приходится писать число 1100001001.

Другой пример: десятичное число (45)10 имеет двоичную запись (101101)2.

При записи числа в десятичной системе каждая позиция занята десятичной цифрой. Аналогично при записи числа в двоичной системе каждая позиция занята двоичной цифрой. В научном мире вместо двух слов "двоичная цифра" употребляют одно слово: "бит". Оно произошло от английского bit, составленного из начальных и конечной букв словосочетания binary digit, что в переводе означает "двоичная цифра". Мы можем сказать, что двоичная запись числа (45)10 содержит шесть бит, а числа (777)10– десять бит.

С помощью одного бита можно записать только числа 0 и 1, двух бит - числа от 0 до 3, трех бит - числа от 0 до 7, четырех бит — числа от 0 до 115 и т.д.

Чтобы записать числа от 0 до 1000, пот ребуется десять бит. В двоичной системе счисления даже сравнительно небольшое число занимает много позиций.

А как "разгадать", какое десятичное число скрывается под его записью в двоичной системе? Правило простое: под каждым разрядом двоичного числа следует записать его "вес". Те "веса", которые соответствуют единичным разрядам, нужно сложить. Полученная сумма и есть "разгадка". Вот перед нами "загадочное" число 1001011, записанное в двоичной нумерации. Поступаем согласно сказанному выше:

Как видим, заинтересовавшее нас число складывается из единицы, двойки, восьмерки и шестидесяти четырех (1 + 2 + 8 + 64). Очевидно, оно равно 75. Попробуйте самостоятельно определить, какому числу соответствует его двоичная запись 10110011.

Вот и состоялось наше первое знакомство с двоичной системой счисления, начавшей свое победное шествие со второй половины XX в. Но не нужно связывать появление на сцене двоичной арифметики с изобретением электронных вычислительных машин. Использование ее в ЭВМ - только одно из новейших применений двоичной системы. Дело в том, что двоичная система счисления стара, как мир!

Так, в начале прошлого века у вымирающего охотничьего индейского племени абипонов в Аргентине путешественники обнаружили числительные только для 1 - "инитара" и 2 - "иньоака". Число 3 они выражали как "иньоака-инитара".

Австралийские племена, обитавшие в бухте Купера, также имели две цифры и пользовались двоичным счетом: 1 - "гуна", 2 - "баркула", 3 - "баркула-гуна", 4 - "баркула-баркула"...

Не правда ли, это очень напоминает современное двоичное представление чисел. Если слово "гуна" заменить словом "нуль", а слово "баркула" словом "один", то получим современную двоичную последовательность: "нуль" (0), "один" (1), "один-нуль" (10), "один-один" (II).

Еще один пример. У туземцев островов, расположенных в Торресовом проливе (отделяющем Новую Гвинею от Австралии), тоже было всего две цифры - это "урапун" (1) и "окоза" (2). Островитяне считали так: "окоза-урапун" (3), "окоза-окоза" (4), "окоза-окоза-урапун" (5), "окоза-окоза-окоза" (6). И здесь замена слов "урапун" и "окоза" словами "нуль" и "один" позволяет разглядеть своеобразную цепочку двоичных чисел: "нуль" (0), "один" (1), "один-нуль" (10), "один-один" (11), "один-один-нуль" (110), "один-один-один" (111).

Двоичная система счисления существовала в Китае. Говорят, ее изобрел император Фо Ги, который жил в четвертом тысячелетии до нашей эры. Найдена надпись (ее называют табличкой Фо Ги), в которой числа от 0 до 7 обозначались с помощью черточек и пар точек. Черточка означает "1", пара точек - "0".

Миссионеры, посещавшие Китай, познакомили с табличкой императора Фо Ги выдающегося немецкого математика Г.Ф. Лейбница (1646 -1716).

Удивительна судьба этого человека. Сын профессора Лейпцигского университета. В 12 лет изучил латинский язык, увлекся древнегреческим. В 18 лет окончил университет, в котором преподавал его отец. Дипломат, историограф, надворный советник, член Лондонского королевского общества. Почти все время работал при дворах немецких государей, князей и герцогов. Основал в 1700 г. Берлинскую академию наук и стал ее первым президентом. Оказал влияние на развитие наук в России и организацию Петербургской академии. Пожалован Петром I в тайные советники.

Блестящая жизнь и нищая смерть. Старый и больной Лейбниц умирал, забытый всеми. Смерть его не была замечена ни в Берлинской академии наук, ни в Лондонском королевском обществе. Он был похоронен как нищий, а не как гений Германии.

Заслуги Г.Ф. Лейбница перед наукой поистине грандиозны. Его удивительный ум породил большое количество плодотворных идей почти во всех областях человеческих знаний. В физике Лейбниц сформулировал основной закон сохранения кинетической энергии, в математике открыл основные принципы дифференциального и интегрального исчислений. Именно Лейбниц положил начало новой науке - алгебре логики, которая приобрела исключительное значение для создания компьютеров. Он даже сумел построить механическую счетную машину, которая могла складывать, вычитать, умножать целые числа.

Возможно, стремление воплотить в жизнь свои мысли о правилах логики, о механизации и автоматизации мыслительных процессов, о значении игр в теории познания, т. е. о том, что мы сейчас объединяем одним словом "кибернетика", и привело Лейбница к созданию двоичной арифметики. Натолкнуть его на эту идею могла и табличка китайского императора Фо Ги.

Сохранился рисунок Лейбница. Посмотрите, как на нем изображены числа от 0 до 17: правые числа в обеих колонках записаны в десятичной системе, левые - в двоичной. Перед числами 2, 4, 8, 16 поставлены звездочки: так отмечены "веса" двоичных разрядов. Вверху рисунка расположена латинская надпись: "1,2,3,4, 5 и т.д. Для получения всех чисел из нуля достаточно единицы". Внизу рисунка - надпись: "Картина создания. Г(отфрид) Г(ильом) Л(ейбниц). MDC XCVN" (1697 г.).

Поделиться:
Популярные книги

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Защитник

Кораблев Родион
11. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Защитник

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Диверсант

Вайс Александр
2. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Диверсант

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Дайте поспать!

Матисов Павел
1. Вечный Сон
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать!

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Я не Монте-Кристо

Тоцка Тала
Любовные романы:
современные любовные романы
5.57
рейтинг книги
Я не Монте-Кристо