100 великих учёных
Шрифт:
Блуждающая почка, которая мучила его ещё со времени школьной травмы, теперь стала причинять невыразимые страдания. Лечил его Сергей Петрович Боткин и ассистент Боткина Александр Александрович Загумени, муж старшей дочери Зинина. Они рекомендовали полный покой, поскольку сильные боли могли оказаться роковыми.
Печальные прогнозы оправдались: во время одного из таких приступов сердце не выдержало… Это случилось 6 (18) февраля 1880 года.
ГЕРМАН ГЕЛЬМГОЛЬЦ
Герман Гельмгольц — один из величайших учёных XIX века. Физика, физиология, анатомия, психология, математика… В каждой
Герман Людвиг Фердинанд Гельмгольц родился 31 августа 1821 года в семье потсдамского учителя гимназии. По желанию отца, в 1838 году Герман поступил в военно-медицинский институт Фридриха Вильгельма для изучения медицины. Под влиянием знаменитого физиолога Иоганна Мюллера, Гельмгольц посвятил себя изучению физиологии и по прослушании курса института защитил в 1842 году докторскую диссертацию, посвящённую строению нервной системы. В этой работе двадцатидвухлетний врач впервые доказал существование целостных структурных элементов нервной ткани, получивших позднее название нейронов.
В том же году Герман назначается ординатором в больницу в Берлине. С 1843 года начался служебный путь Гельмгольца в качестве потсдамского военного врача. Жил он в казарме и вставал в пять часов утра по сигналу кавалерийской трубы. Но эскадронный хирург гусарского полка находил время и для занятий наукой. В 1845 году он прощается с военной службой и едет в Берлин для подготовки к государственным экзаменам на звание врача. Гельмгольц усердно занимается в домашней физической лаборатории Густава Магнуса.
А. Г. Столетов, чутко уловивший перелом в научном развитии Германии в сороковых годах, писал: «Домашняя лаборатория Магнуса — первый пример физической лаборатории — становится рассадником физиков-экспериментаторов». Впоследствии воспитанник этой лаборатории Гельмгольц становится преемником Магнуса и переносит лабораторию в здание Берлинского университета, где она превращается в мировой научный центр.
Другим учителем Гельмгольца в Берлине был Иоганн Мюллер. Много позднее 2 ноября 1871, на чествовании Гельмгольца по случаю его семидесятилетия он произнёс речь, в которой охарактеризовал свой научный путь. Он указал, что под влиянием Иоганна Мюллера заинтересовался вопросом о загадочном существе жизненной силы. Размышляя над этой проблемой, Гельмгольц в последний год студенчества пришёл к выводу, что теория жизненной силы «приписывает всякому живому телу свойства так называемого perpetuum mobile». Гельмгольц был знаком с проблемой вечного двигателя со школьных лет, а в студенческие годы «в свободные минуты… разыскивал и просматривал сочинения Даниила Бернулли, Даламбера и других математиков прошлого столетия». «Таким образом, я, — говорил Гельмгольц, — натолкнулся на вопрос: „Какое отношение должно существовать между различными силами природы, если принять, что perpetuum mobile вообще невозможен?“ — и далее: „Выполняются ли в действительности все эти отношения?“»
В журнале Мюллера Гельмгольц опубликовал в 1845 году работу «О расходовании вещества при действии мышц». В том же 1845 году молодые учёные, группировавшиеся вокруг Магнуса и Мюллера, образовали Берлинское физическое общество. В него вошёл и Гельмгольц. С 1845 года общество, превратившееся в дальнейшем в Немецкое физическое общество, стало издавать первый реферативный журнал «Успехи физики».
Научное развитие Гельмгольца происходило, таким образом, в благоприятной обстановке возросшего интереса к естествознанию в Берлине. Уже в первом томе «Успехов физики, 1845», вышедшем в Берлине в 1847 году, был напечатан обзор, выполненный Гельмгольцем по теории физиологических тепловых явлений. 23 июля 1847
Авторитеты в то время «были склонны отвергать справедливость закона; среди той ревностной борьбы, какую они вели с натурфилософией Гегеля, и моя работа была сочтена за фантастическое умствование…». Однако Гельмгольц не был одинок, его поддержала научная молодёжь, и, прежде всего, будущий знаменитый физиолог Дюбуа Реймон и молодое Берлинское физическое общество.
Что же касается отношения его к работам предшественников Майера и Джоуля, то Гельмгольц неоднократно признавал приоритет Майера и Джоуля, подчёркивая, однако, что с работой Майера он не был знаком, а работы Джоуля знал недостаточно.
В отличие от своих предшественников он связывает закон с принципом невозможности вечного двигателя. Материю Гельмгольц рассматривает как пассивную и неподвижную. Для того чтобы описать изменения, происходящие в мире, её надо наделить силами как притягательными, так и отталкивательными. «Явления природы, — говорит Гельмгольц, — должны быть сведены к движениям материи с неизменными движущими силами, которые зависят только от пространственных взаимоотношений».
Таким образом, мир, по Гельмгольцу, — это совокупность материальных точек, взаимодействующих друг с другом с центральными силами. Силы эти консервативны, и Гельмгольц во главу своего исследования ставит принцип сохранения живой силы. Принцип Майера «из ничего ничего не бывает» Гельмгольц заменяет более конкретным положением, что «невозможно при существовании любой произвольной комбинации тел получать непрерывно из ничего движущую силу».
Принцип сохранения живой силы в его формулировке гласит: «Если любое число подвижных материальных точек движется только под влиянием таких сил, которые зависят от взаимодействия точек друг на друга или которые направлены к неподвижным центрам, то сумма живых сил всех взятых вместе точек останется одна и та же во все моменты времени, в которые все точки получают те же самые относительные положения друг по отношению к другу и по отношению к существующим неподвижным центрам, каковы бы ни были их траектории и скорости в промежутках между соответствующими моментами».
Сформулировав этот принцип, Гельмгольц рассматривает его применения в различных частных случаях. Рассматривая электрические явления, Гельмгольц находит выражение энергии точечных зарядов и показывает физическое значение функции, названной Гауссом потенциалом. Далее он вычисляет энергию системы заряженных проводников и показывает, что при разряде лейденских банок выделяется теплота, эквивалентная запасённой электрической энергии. Он показал при этом, что разряд является колебательным процессом и электрические колебания «делаются всё меньше и меньше, пока наконец живая сила не будет уничтожена суммой сопротивлений».
Затем Гельмгольц рассматривает гальванизм. Гельмгольц разбирает энергетические процессы в гальванических источниках, в термоэлектрических явлениях, положив начало будущей термодинамической теории этих явлений. Рассматривая магнетизм и электромагнетизм, Гельмгольц, в частности, даёт свой известный вывод выражения электродвижущей силы индукции, исходя из исследований Неймана и опираясь на закон Ленца.
В своём сочинении Гельмгольц в отличие от Майера уделяет главное внимание физике и лишь очень бегло и сжато говорит о биологических явлениях. Тем не менее именно это сочинение открыло Гельмгольцу дорогу к кафедре физиологии и общей патологии медицинского факультета Кёнигсбергского университета, где он в 1849 году получил должность экстраординарного профессора.