А ну-ка, догадайся!
Шрифт:
Может ли один из торов «проглотить» другой так, чтобы тот оказался целиком внутри него? Оказывается, может. Подробности приведены в моей статье, опубликованной в мартовском номере журнала Scientific American за 1977 г. Другие парадоксы, связанные с торами, вы найдете в моих статьях, опубликованных в том же журнале в декабре 1972 г. (о заузленных торах) и в декабре 1979 г.
Венди решила купить себе кожаный браслет.
В
Венди. Сколько стоит плетеный браслет?
Люк. Пять долларов, мадам, но, к сожалению, он уже продан.
Венди. Какая жалость! А нет ли у вас еще одного такого браслета?
Люк. Есть, вот он перед вами.
Венди. Да, но ведь этот браслет не плетеный, а гладкий.
Люк. С удовольствием заплету его для вас.
Хотя в это трудно поверить, Люк сплел браслет за полминуты, не разрезав ни одного ремешка! Вот как он начал.
Самое удивительное в плетеном браслете, который так понравился Венди, — это то, что «косу» можно заплести даже в том случае, если концы «прядей» скреплены с двух сторон. Иначе говоря, плетеный браслет топологически эквивалентен гладкому. Последовательные этапы плетения браслета изображены ниже. Ремешки в таком браслете перекрещиваются 6 раз. Удлиняя их, можно заплетать косы с любым числом перекрещиваний, кратным 6. Если вы захотите сплести себе браслет или пояс, замочите предварительно кожу в теплой воде, чтобы она стала мягче.
Косы такого рода можно заплетать не только из трех, но и из большего числа прядей. Более подробно о таких косах рассказывается в статье А. Г. Шепперда «Косы, которые можно заплести из прядей, скрепленных с обоих концов» [13] . См. также главу «Теория групп и косы» в моей книге «Математические головоломки и развлечения» [14]
Большинство людей видят в таком браслете лишь еще один топологический курьез. В действительности же речь идет о вещах несравненно более важных и интересных. Математик Эмиль Артин построил даже теорию кос, воспользовавшись для этого аппаратом теории групп.
13
Proceedings of the Royal Society, 1962, A265, pp. 229–244
14
См. сноску на с. 44, с 358–370.
Элементом группы является схема переплетения прядей, операция состоит в последовательном плетении двух схем, а элементом обратным данной схеме, — зеркально-симметричная схема. Косы служат великолепным введением в теорию групп и преобразований.
(Элементарное введение в теорию кос можно найти в статье Артина «Теория кос» [15] .)
15
The Mathematical Teacher, may 1959.
Пат поднимался по узкой тропинке, ведущей к вершине горы. Он отправился в путь в 7 00
Переночевав на вершине, Пат на следующее утро в 7.00 пустился в обратный путь по той же тропинке.
В тот же день в 7.00 вечера Пат спустился в долину, где встретил своего преподавателя топологии миссис Клейн.
М-с Клейн. Рада видеть вас, Пат. Известно ли вам, что какую-то точку своего маршрута вы вчера и сегодня миновали в одно и то же время?
Пат. Должно быть, вы разыгрываете меня, миссис Клейн! Такого не может быть! Я шел с различной скоростью и даже останавливался на привал, чтобы отдохнуть и перекусить.
Но миссис Клейн оказалась права.
М-с Клейн. Представьте себе, что у вас есть двойник, который начинает спускаться в тот самый момент, когда вы начинаете восхождение. Независимо от того, с какой бы скоростью ни проходил он отдельные участки маршрута, вы все равно с ним встретитесь.
М-с Клейн. Мы не можем сказать заранее, где именно произойдет встреча, но в том, что она непременно произойдет, нет никаких сомнений. Следовательно, какую-то точку маршрута вы вчера и сегодня миновали в одно и то же время.
Поскольку Пат затратил на подъем и спуск одна и то же время, каждой точке маршрута мы можем сопоставить 2 числа, показывающие, когда Пат миновал ее по пути на вершину и при спуске. Между этими числами существует взаимно-однозначное соответствие, и по крайней мере два числа совпадают. Историю о Пате можно рассматривать как очень простой пример того, что топологи называют теоремой о неподвижной точке. Она принадлежит к числу так называемых чистых теорем существования, то есть лишь утверждает, что по крайней мере одна неподвижная точка существует, умалчивая о том, каким образом эту точку можно найти. Теоремы о неподвижной точке играют важную роль в приложениях топологии к другим областям математики и к естественным наукам.
Суть знаменитой теоремы о неподвижной точке можно продемонстрировать, взяв пустую коробку и лист бумаги, точно покрывающий ее дно. Пусть каждой точке на листе бумаги соответствует та точка на дне коробки, которая под ней находится. Вынув затем лист из коробки и скатав его в шарик, бросим его обратно в коробку. Топологи доказали, что независимо от того, как именно смят лист бумаги и в какое место на дне коробки попал скатанный из него бумажный шарик, по крайней мере одна точка на листе непременно окажется над соответствующей ей точкой на дне коробки! (См. раздел «Теорема о неподвижной точке» в главе 5 («Топология») книги Р. Куранта, Г. Роббинса «Что такое математика?» [16] )
16
Курант Р., Роббинс Г. Что такое математика? Элементарный очерк идей и методов. Изд. 2-е. — М.: Просвещение, 1967, с 282–285.
Теорема о неподвижной точке, впервые доказанная голландским математиком Брауэром в 1912 г., имеет много необычных приложений. Например, она позволяет утверждать, что в любой момент времени на земном шаре существует такое место, где скорость ветра равна нулю. Другое, не менее удивительное следствие из той же теоремы: на земном шаре всегда существуют по крайней мере две точки-антипода (лежащие на противоположных концах одного диаметра Земли), в которых температура и барометрическое давление совпадают. Аналогичная теорема позволяет доказать, что шар, поросший волосами, невозможно причесать гладко: по крайней мере один волос всегда останется торчать. (В отличие от шара волосатый тор можно причесать гладко.) Хорошим введением в теоремы такого рода может служить статья Марвина Шинброта «Теоремы о неподвижной точке» (Scientific American, январь 1966).