Чтение онлайн

на главную - закладки

Жанры

А ну-ка, догадайся!

Гарднер Мартин

Шрифт:

Может ли один из торов «проглотить» другой так, чтобы тот оказался целиком внутри него? Оказывается, может. Подробности приведены в моей статье, опубликованной в мартовском номере журнала Scientific American за 1977 г. Другие парадоксы, связанные с торами, вы найдете в моих статьях, опубликованных в том же журнале в декабре 1972 г. (о заузленных торах) и в декабре 1979 г.

Чудо-коса

Венди решила купить себе кожаный браслет.

В

магазине ей понравились два браслета. Каждый из них был сделан из трех ремешков: один сплетен из ремешков, другой — гладкий.

Венди. Сколько стоит плетеный браслет?

Люк. Пять долларов, мадам, но, к сожалению, он уже продан.

Венди. Какая жалость! А нет ли у вас еще одного такого браслета?

Люк. Есть, вот он перед вами.

Венди. Да, но ведь этот браслет не плетеный, а гладкий.

Люк. С удовольствием заплету его для вас.

Хотя в это трудно поверить, Люк сплел браслет за полминуты, не разрезав ни одного ремешка! Вот как он начал.

Самое удивительное в плетеном браслете, который так понравился Венди, — это то, что «косу» можно заплести даже в том случае, если концы «прядей» скреплены с двух сторон. Иначе говоря, плетеный браслет топологически эквивалентен гладкому. Последовательные этапы плетения браслета изображены ниже. Ремешки в таком браслете перекрещиваются 6 раз. Удлиняя их, можно заплетать косы с любым числом перекрещиваний, кратным 6. Если вы захотите сплести себе браслет или пояс, замочите предварительно кожу в теплой воде, чтобы она стала мягче.

Косы такого рода можно заплетать не только из трех, но и из большего числа прядей. Более подробно о таких косах рассказывается в статье А. Г. Шепперда «Косы, которые можно заплести из прядей, скрепленных с обоих концов» [13] . См. также главу «Теория групп и косы» в моей книге «Математические головоломки и развлечения» [14]

Большинство людей видят в таком браслете лишь еще один топологический курьез. В действительности же речь идет о вещах несравненно более важных и интересных. Математик Эмиль Артин построил даже теорию кос, воспользовавшись для этого аппаратом теории групп.

13

Proceedings of the Royal Society, 1962, A265, pp. 229–244

14

См. сноску на с. 44, с 358–370.

Элементом группы является схема переплетения прядей, операция состоит в последовательном плетении двух схем, а элементом обратным данной схеме, — зеркально-симметричная схема. Косы служат великолепным введением в теорию групп и преобразований.

(Элементарное введение в теорию кос можно найти в статье Артина «Теория кос» [15] .)

Точка, которой не может не быть
<

15

The Mathematical Teacher, may 1959.

empty-line/>

Пат поднимался по узкой тропинке, ведущей к вершине горы. Он отправился в путь в 7 00

утра и в тот же день достиг вершины в 7.00 вечера.

Переночевав на вершине, Пат на следующее утро в 7.00 пустился в обратный путь по той же тропинке.

В тот же день в 7.00 вечера Пат спустился в долину, где встретил своего преподавателя топологии миссис Клейн.

М-с Клейн. Рада видеть вас, Пат. Известно ли вам, что какую-то точку своего маршрута вы вчера и сегодня миновали в одно и то же время?

Пат. Должно быть, вы разыгрываете меня, миссис Клейн! Такого не может быть! Я шел с различной скоростью и даже останавливался на привал, чтобы отдохнуть и перекусить.

Но миссис Клейн оказалась права.

М-с Клейн. Представьте себе, что у вас есть двойник, который начинает спускаться в тот самый момент, когда вы начинаете восхождение. Независимо от того, с какой бы скоростью ни проходил он отдельные участки маршрута, вы все равно с ним встретитесь.

М-с Клейн. Мы не можем сказать заранее, где именно произойдет встреча, но в том, что она непременно произойдет, нет никаких сомнений. Следовательно, какую-то точку маршрута вы вчера и сегодня миновали в одно и то же время.

Поскольку Пат затратил на подъем и спуск одна и то же время, каждой точке маршрута мы можем сопоставить 2 числа, показывающие, когда Пат миновал ее по пути на вершину и при спуске. Между этими числами существует взаимно-однозначное соответствие, и по крайней мере два числа совпадают. Историю о Пате можно рассматривать как очень простой пример того, что топологи называют теоремой о неподвижной точке. Она принадлежит к числу так называемых чистых теорем существования, то есть лишь утверждает, что по крайней мере одна неподвижная точка существует, умалчивая о том, каким образом эту точку можно найти. Теоремы о неподвижной точке играют важную роль в приложениях топологии к другим областям математики и к естественным наукам.

Суть знаменитой теоремы о неподвижной точке можно продемонстрировать, взяв пустую коробку и лист бумаги, точно покрывающий ее дно. Пусть каждой точке на листе бумаги соответствует та точка на дне коробки, которая под ней находится. Вынув затем лист из коробки и скатав его в шарик, бросим его обратно в коробку. Топологи доказали, что независимо от того, как именно смят лист бумаги и в какое место на дне коробки попал скатанный из него бумажный шарик, по крайней мере одна точка на листе непременно окажется над соответствующей ей точкой на дне коробки! (См. раздел «Теорема о неподвижной точке» в главе 5 («Топология») книги Р. Куранта, Г. Роббинса «Что такое математика?» [16] )

16

Курант Р., Роббинс Г. Что такое математика? Элементарный очерк идей и методов. Изд. 2-е. — М.: Просвещение, 1967, с 282–285.

Теорема о неподвижной точке, впервые доказанная голландским математиком Брауэром в 1912 г., имеет много необычных приложений. Например, она позволяет утверждать, что в любой момент времени на земном шаре существует такое место, где скорость ветра равна нулю. Другое, не менее удивительное следствие из той же теоремы: на земном шаре всегда существуют по крайней мере две точки-антипода (лежащие на противоположных концах одного диаметра Земли), в которых температура и барометрическое давление совпадают. Аналогичная теорема позволяет доказать, что шар, поросший волосами, невозможно причесать гладко: по крайней мере один волос всегда останется торчать. (В отличие от шара волосатый тор можно причесать гладко.) Хорошим введением в теоремы такого рода может служить статья Марвина Шинброта «Теоремы о неподвижной точке» (Scientific American, январь 1966).

Поделиться:
Популярные книги

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

Неудержимый. Книга IV

Боярский Андрей
4. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IV

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Безродный

Коган Мстислав Константинович
1. Игра не для слабых
Фантастика:
боевая фантастика
альтернативная история
6.67
рейтинг книги
Безродный