Архитектура операционной системы UNIX
Шрифт:
Теперь ядро переходит к началу цикла, содержащегося в алгоритме read. Оно преобразует смещение в байтах (1024) в номер логического блока (1), обращается ко второму блоку прямой адресации, номер которого хранится в индексе, и отыскивает точный дисковый блок, из которого будет производиться чтение. Ядро считывает блок из буферного кеша или с диска, если в кеше данный блок отсутствует. Наконец, оно копирует 20 байт из буфера по уточненному адресу в пользовательский процесс. Прежде чем выйти из системной функции, ядро устанавливает значение поля смещения в таблице файлов равным 1044, то есть равным значению смещения в байтах до места, куда будет производиться следующее обращение. В последнем вызове функции read из примера ядро ведет себя, как и в первом обращении к функции, за исключением
Пример показывает, насколько выгодно для запросов ввода-вывода работать с данными, начинающимися на границах блоков файловой системы и имеющими размер, кратный размеру блока. Это позволяет ядру избегать дополнительных итераций при выполнении цикла в алгоритме read и всех вытекающих последствий, связанных с дополнительными обращениями к индексу в поисках номера блока, который содержит данные, и с конкуренцией за использование буферного пула. Библиотека стандартных модулей ввода-вывода создана таким образом, чтобы скрыть от пользователей размеры буферов ядра; ее использование позволяет избежать потерь производительности, присущих процессам, работающим с небольшими порциями данных, из-за чего их функционирование на уровне файловой системы неэффективно (см. упражнение 5.4).
Выполняя цикл чтения, ядро определяет, является ли файл объектом чтения с продвижением: если процесс считывает последовательно два блока, ядро предполагает, что все очередные операции будут производить последовательное чтение, до тех пор, пока не будет утверждено обратное. На каждом шаге цикла ядро запоминает номер следующего логического блока в копии индекса, хранящейся в памяти, и на следующем шаге сравнивает номер текущего логического блока со значением, запомненным ранее. Если эти номера равны, ядро вычисляет номер физического блока для чтения с продвижением и сохраняет это значение в пространстве процесса для использования в алгоритме breada. Конечно же, пока процесс не считал конец блока, ядро не запустит алгоритм чтения с продвижением для следующего блока.
Обратившись к Рисунку 4.9, вспомним, что номера некоторых блоков в индексе или в блоках косвенной адресации могут иметь нулевое значение, пусть даже номера последующих блоков и ненулевые. Если процесс попытается прочитать данные из такого блока, ядро выполнит запрос, выделяя произвольный буфер в цикле read, очищая его содержимое и копируя данные из него по адресу пользователя. Этот случай не имеет ничего общего с тем случаем, когда процесс обнаруживает конец файла, говорящий о том, что после этого места запись информации никогда не производилась. Обнаружив конец файла, ядро не возвращает процессу никакой информации (см. упражнение 5.1).
Когда процесс вызывает системную функцию read, ядро блокирует индекс на время выполнения вызова. Впоследствии, этот процесс может приостановиться во время чтения из буфера, ассоциированного с данными или с блоками косвенной адресации в индексе. Если еще одному процессу дать возможность вносить изменения в файл в то время, когда первый процесс приостановлен, функция read может возвратить несогласованные данные. Например, процесс может считать из файла несколько блоков; если он приостановился во время чтения первого блока, а второй процесс собирался вести запись в другие блоки, возвращаемые данные будут содержать старые данные вперемешку с новыми. Таким образом, индекс остается заблокированным на все время выполнения вызова функции read для того, чтобы процессы могли иметь целостное видение файла, то есть видение того образа, который был у файла перед вызовом функции.
Ядро может выгружать процесс, ведущий чтение, в режим задачи на время между двумя вызовами функций и планировать запуск других процессов. Так как по окончании выполнения системной функции с индекса снимается блокировка, ничто не мешает другим процессам обращаться к файлу и изменять его содержимое. Со стороны системы было бы несправедливо держать индекс заблокированным все время от момента, когда процесс открыл файл, и до того момента, когда файл будет закрыт этим процессом, поскольку тогда один процесс будет держать все время файл открытым, тем самым не давая другим процессам возможности обратиться к файлу. Если файл имеет имя «/etc/ passwd», то есть является файлом, используемым в процессе регистрации для проверки пользовательского пароля, один пользователь может умышленно (или, возможно, неумышленно) воспрепятствовать регистрации в системе всех остальных пользователей. Чтобы предотвратить возникновение подобных проблем, ядро снимает с индекса блокировку по окончании выполнения каждого вызова системной функции, использующей индекс. Если второй процесс внесет изменения в файл между двумя вызовами функции read, производимыми первым процессом, первый процесс может прочитать непредвиденные данные, однако структуры данных ядра сохранят свою согласованность.
Предположим, к примеру, что ядро выполняет два процесса, конкурирующие между собой (Рисунок 5.8). Если допустить, что оба процесса выполняют операцию open до того, как любой из них вызывает системную функцию read или write, ядро может выполнять функции чтения и записи в любой из шести последовательностей: чтение1, чтение2, запись1, запись2, или чтение1, запись1, чтение2, запись2, или чтение1, запись1, запись2, чтение2 и т. д. Состав информации, считываемой процессом A, зависит от последовательности, в которой система выполняет функции, вызываемые двумя процессами; система не гарантирует, что данные в файле останутся такими же, какими они были после открытия файла. Использование возможности захвата файла и записей (раздел 5.4) позволяет процессу гарантировать сохранение целостности файла после его открытия.
Рисунок 5.8. Процессы, ведущие чтение и запись файла
Наконец, программа на Рисунке 5.9 показывает, как процесс может открывать файл более одного раза и читать из него, используя разные файловые дескрипторы. Ядро работает со значениями смещений в таблице файлов, ассоциированными с двумя файловыми дескрипторами, независимо, и поэтому массивы buf1 и buf2 будут по завершении выполнения процесса идентичны друг другу при условии, что ни один процесс в это время не производил запись в файл «/etc/passwd».
Рисунок 5.9. Чтение из файла с использованием двух дескрипторов