Чтение онлайн

на главную - закладки

Жанры

Asterisk™: будущее телефонии Второе издание
Шрифт:

Рис. 7.3. Дискретизация гармонической волны с использованием четырех битов

В каждом временном интервале измеряется амплитуда волны и записывается соответствующая интенсивность, иначе говоря, мы делаем замер. Как видите, разрядность в четыре бита ограничивает точность. Первый замер приходится округлять до 0011, следующий интервал дает значение 0101. Затем идут 0100, 1001, 1011 и т.д. В общем, получается 14 измерений (в реальности должно быть сделано несколько тысяч измерений

в секунду).

Если из всех значений составить строку, их можно передавать на другой конец:

0011 0101 0100 1001 1011 1011 1010 0001 0101 0101 0000 1100 1100 1010 При передаче по проводам этот код выглядит примерно так, как показано на рис. 7.4.

Рис. 7.4. ИКМ-кодированная волна

Когда цифроаналоговый (digital-to-analog, D/A) преобразователь на дальнем конце получает этот сигнал, он может использовать данную информацию для построения волны, как показано на рис. 7.5.

На основании этих данных волна может быть восстановлена (рис. 7.6).

Рис. 7.5. Графическое представление ИКМ-сигнала

Рис. 7.6. Сигнал без сглаживания

Как видите, если сравнить рис. 7.2 и 7.6, такая реконструкция волны не очень точная. Это было сделано намеренно, чтобы продемонстрировать важный момент: качество оцифрованной волны зависит от разрядности и частоты, с которой выполняются замеры. При слишком низкой частоте дискретизации качество получаемого аудиосигнала будет неприемлемым.

Повышение разрешения и частоты дискретизации

Вернемся к исходной волне и на этот раз используем пять битов для определения интервалов квантования (рис. 7.7).

Рис. 7.7. Та же волна при более высокой разрядности квантования

На самом деле пятибитовой ИКМ не существует. В телефонной сети замеры ИКМ кодируются с помощью 8 бит1.

Также удвоим частоту дискретизации. Точки, откладываемые на этот раз, представлены на рис. 7.8.

Теперь количество замеров и разрядность увеличены вдвое. Вот полученные данные:

00111 01000 01001 01001 01000 00101 10110 11000 11001 11001 11000 10111 10100 10001 00010 00111 01001 01010 01001 00111 00000 11000 11010 11010 11001 11000 10110 10001

При получении на другом конце эти данные могут быть представлены так, как показано на рис. 7.9.

На основании этой информации может быть построена волна, представленная на рис. 7.10.

Другие методы цифровой аудиозаписи могут использовать 16 бит или более.

Рис. 7.8.

Та же волна при вдвое большей разрядности

Рис. 7.9. ИКМ-сигнал с разрядностью 5 бит

Как видите, полученная в данном случае волна намного более точно представляет оригинал. Однако также можно заметить, что все равно имеется возможность для улучшения.

Обратите внимание, что при кодировании волны с разрядностью квантования 4 бита использовалось 40 бит, тогда как для отправки той же волны с разрядностью квантования 5 бит (и также вдвое большей частотой дискретизации) пришлось использовать 156 бит. Суть в том, что существует соотношение: чем лучшее качество необходимо обеспечить при кодировании аудиосигнала, тем больше битов для этого используется, и тем больше битов придется передавать (естественно, в реальном масштабе времени), и тем большая полоса пропускания потребуется.

Рис. 7.10. Волна, полученная из ИКМ-сигнала с разрядностью 5 бит

Теорема Найквиста

Итак, какая частота дискретизации будет достаточной? Такой же вопрос задал себе в 20-х годах прошлого века инженер-электрик (и сотрудник AT&T/Bell) Гарри Найквист (Harry Nyquist). Теорема Найквиста гласит: «Чтобы можно было абсолютно точно восстановить исходный сигнал по его дискретной версии, частота дискретизации должна быть вдвое больше полосы частот входного сигнала» [79] .

79

Найквист опубликовал две статьи, «Certain Factors Affecting Telegraph Speed» (1924) и «Certain Topics in Telegraph Transmission Theory» (1928), в которых постулировал свою теорему, ставшую известной как теорема Найквиста. Подтвержденная в 1949 году Клодом Шенноном (Claude Shannon) («Communication in the Presence of Noise»), она получила название «теорема о дискретном представлении Найквиста-Шеннона».

По существу, это означает следующее: чтобы точно кодировать аналоговый сигнал, частота замеров должна вдвое превышать максимальную частоту в частотном диапазоне, который требуется воспроизвести. Поскольку телефонная сеть не будет передавать частоты ниже 300 и выше 4000 Гц, частоты дискретизации 8000 замеров в секунду будет достаточно для воспроизведения любой частоты в частотном диапазоне аналогового телефона. Запомните величину 8000 замеров в секунду; мы поговорим об этом немного позже.

Компандирование по логарифмическому закону

Итак, мы рассмотрели основы квантования и обсудили тот факт, что большее количество интервалов квантования (то есть более высокая частота дискретизации) обеспечивают лучшее качество, но при этом требуется большая полоса пропускания. Наконец, мы обсудили, какой должна быть минимальная частота дискретизации для точного измерения диапазона частот, который мы хотим передавать (в случае с телефоном это 8000 Гц). Все это сводится к тому, что по проводам передается довольно большое количество данных, поэтому пришла пора поговорить о компандировании.

Поделиться:
Популярные книги

Хозяйка дома на холме

Скор Элен
1. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка дома на холме

Удобная жена

Волкова Виктория Борисовна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Удобная жена

Первый пользователь. Книга 3

Сластин Артем
3. Первый пользователь
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Первый пользователь. Книга 3

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Сердце Дракона. Двадцатый том. Часть 2

Клеванский Кирилл Сергеевич
Сердце дракона
Фантастика:
фэнтези
5.00
рейтинг книги
Сердце Дракона. Двадцатый том. Часть 2

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор

Наследник Четырех

Вяч Павел
5. Игра топа
Фантастика:
героическая фантастика
рпг
6.75
рейтинг книги
Наследник Четырех