Чтение онлайн

на главную - закладки

Жанры

Атомный проект. История сверхоружия
Шрифт:

Испытания по сбросу бомб таких размеров с бомбардировщика «Б-29» начались в августе 1943 года. Крупномасштабное производство самолетов этой модели для военных целей в Америке только начиналось, и машину требовалось усовершенствовать – так, чтобы она могла донести бомбы до цели. В ходе экспериментов нужно было определить, какие именно изменения понадобится внести в конструкцию самолета. Для сохранения секретности при телефонных разговорах авиационные служащие говорили о самолетах так, как будто они предназначались для перелетов Франклина Рузвельта («Худыш») и Уинстона Черчилля («Толстяк»).

В это время итальянский физик Эмилио Сегре сделал открытие, значительно приблизившее день создания атомной бомбы. В декабре 1943 года он обосновался в небольшом деревянном домике в укромном каньоне Пахарито в нескольких милях от основной лаборатории. Здесь Сегре повторял эксперименты, направленные на изучение

спонтанного деления ядер природного урана, которые ранее проводил в Беркли. В целом результаты были такими же, но явно указывали на большее содержание урана-235. Сегре попытался выяснить почему. Оказалось, что дело в высоте. На плато (2225 метров над уровнем моря) образцы Сегре рассеивали гораздо больше нейтронов – из-за воздействия космических лучей, проникавших через верхние слои атмосферы. Чем ближе к верхним слоям атмосферы находился образец, тем больше нейтронов рассеивалось и тем выше была скорость деления. В Беркли удавалось получить гораздо меньше рассеянных нейтронов, так как по отношению к уровню моря город располагался ниже. Это означало, что, если защитить бомбу от рассеянных нейтронов, риск ее преждевременной детонации значительно снизится. Материал активной зоны может быть гораздо менее чистым, чем предполагалось ранее. Кроме того, можно снизить начальную скорость заряда в пушке, требуемую для сбора сверхкритической массы, а значит, можно уменьшить длину ствола и сделать бомбу гораздо компактнее. С 5 метров (длины «Худыша») размер бомбы теперь уменьшился примерно до 1,8 метра. Новая модель получила название «Малыш» – младший брат «Худыша».

Но оставалось еще одно. Согласно оценкам Эрнеста Лоуренса, за время, отведенное на «Манхэттенский проект», можно выделить такое количество урана-235, которого хватит лишь на одну бомбу. Нельзя угрожать атомной бомбой, не имея ее в наличии. Допустим, союзники по антигитлеровской коалиции используют атомную бомбу в начале 1945 года, но они не смогут подкрепить ее разрушительный эффект угрозой повторного применения. Или придется пойти на очень опасный блеф. А что, если немцы ответят собственной бомбой?..

В Ок-Ридже действовал небольшой экспериментальный ядерный реактор – «Х-10», впервые достигший критической массы в ноябре 1943 года. Он предназначался для производства плутония, который собирались применять в лабораторных опытах. И, работая на этом реакторе, физики из Лос-Аламоса обнаружили проблему, которая поставила под сомнение само существование плутониевой бомбы. Оказалось, что свойства плутония из «Х-10» значительно отличаются от свойств микроскопических доз плутония, которые были получены в циклотроне. Годом ранее Гленн Сиборг предупреждал о том, что плутоний, производимый в реакторе, может содержать небольшие количества изотопа плутоний-240, образующегося из плутония-239 после захвата еще одного нейтрона. Сиборг был прав, но ошибся в количестве. Чем дольше плутоний накапливался в реакторе, тем выше становилась доля плутония-240. И этот изотоп оказался очень нестабильным, активно излучал альфа-частицы и был постоянным источником фоновых нейтронов. Считалось, что при применении «пушечного» метода компоненты с докритической массой дают сверхкритическую в течение примерно одной десятитысячной доли секунды. Высокая же скорость спонтанного деления плутония-240 вызовет попадание целого потока нейтронов в собираемую массу еще до достижения оптимальной конфигурации заряда – значит, преждевременная детонация неизбежна. При этом бомба «займется», но не взорвется.

Чтобы очистить плутоний, нужно было отделить плутоний-240 от плутония-239. Из-за того что ядра двух изотопов отличались только на один нейтрон, задача была значительно сложнее, нежели отделение урана-235 от урана-238. Перспектива получить плутоний, а значит, получить доступ к ядерному топливу, которое не требовало трудоемкого разделения изотопов, теперь представлялась совершенно нереальной.

Для обсуждения проблемы Роберт Оппенгеймер встретился 17 июля 1944 года с Джеймсом Конентом, Артуром Комптоном, Энрико Ферми и Лесли Гровсом в Чикаго. Методов очистки плутония, реализуемых на практике, не существовало. Применять же неочищенное топливо в бомбе, сконструированной по «пушечному» принципу, было нельзя. Конент предложил в качестве альтернативы использовать смесь урана с плутонием. Но это будет маломощное оружие, а его взрывная сила не превысит нескольких сотен тонн тротила. Конечно, создав такое оружие, физики получат опыт, необходимый для конструирования более мощных бомб, но Оппенгеймер решительно возразил, что в таком случае в работе возникнет недопустимая задержка. В заключительном отчете, подготовленном на следующий день, он написал:

Представляется

целесообразным прекратить интенсивные работы, направленные на получение высокоочищенного плутония, и сосредоточиться на разработке методов, не требующих низкого нейтронного фона. В настоящее время наивысший приоритет следует присвоить имплозивному методу.

Взрывные линзы

Сет Неддермейер и его группа, изучавшая имплозию в артиллерийско-техническом отделе, подошла к проблеме достаточно старательно и академично. «Я чувствовал, что [Оппенгеймер] был очень недоволен тем, что я не спешу с результатами, что я как будто работаю не над военным проектом, а над обыденной научной проблемой», – признавал позже Неддермейер.

Однако решение проблемы имплозии предложил не он, а Джеймс Так – физик из Манчестера, специализировавшийся на кумулятивном эффекте и прибывший в США вместе с другими британскими учеными. Неддермейер пытался создать ударную волну практически идеальной сферической формы, изменяя контуры взрыва, вид взрывчатого вещества, количество детонаторов и их расположение. Взрывная волна, порождаемая точечным детонатором, распространялась по взрывчатому веществу точно так же, как расходятся круги по воде, если бросить в воду камешек. При размещении рядом нескольких детонаторов получались непредсказуемые комбинации сходящихся и расходящихся взрывных волн, как если бы в воду бросили целую горсть камней. Джеймс Так утверждал, что эта проблема не нова: американцы и англичане уже давно разрабатывали бронебойные снаряды, в которых вся взрывная сила заряда направлялась внутрь атакуемой брони, в результате чего образовывались так называемые «взрывные линзы». Эффект возникал по тем же законам, которые действовали при фокусировке световых волн обычными линзами. Оптическая линза влияет на скорость проходящего через нее света так, что в различных частях линзы эта скорость становится разной и свет «собирается» к центру. Взрывная линза состоит из серии зарядов с различной скоростью детонации – в результате взрывная волна «собирается» и фокусируется. Если окружить сферическое плутониевое ядро взрывными линзами, а затем синхронно детонировать все заряды, то, по мнению Джеймса Така, можно получить взрывную волну идеальной сферической формы, направленную точно в центр ядра.

Его предложение не сразу было признано искомым решением проблемы. Создать взрывные линзы было гораздо сложнее, чем просто попытаться получить сферическую взрывную волну с помощью обычной взрывчатки. Однако начальные опыты с имплозией, которые проводил Сет Неддермейер, казались многообещающими. Джеффри Тейлор, ведущий британский специалист по гидродинамике, приехал в Лос-Аламос в мае 1944 года и высказал свое веское мнение. Его расчеты свидетельствовали о том, что обычными методами проблему не решить, и физики Лос-Аламоса стали постепенно приходить к пониманию того, что взрывные линзы – это единственный выход.

Роберт Оппенгеймер решил в корне изменить направление деятельности. В августе 1944 года он разделил артиллерийско-технический отдел на два новых: отдел G (от «gadget» – «устройство, штуковина, прибамбас»), в задачу которого входило изучение имплозии и разработка бомбы «Толстяк», и отдел X (от «eXplosives» – взрывчатое вещество), основной задачей которого стала разработка взрывных линз. Во главе второго отдела Оппенгеймер поставил Георгия Кистяковского, американского физика российского происхождения, который до этого бывал на Холме в качестве консультанта. Через несколько месяцев отдел «Х» включал более 600 специалистов, в том числе 400 военных физиков и инженеров, набранных в Специальное инженерное подразделение. В его состав входили рядовые и сержанты, многие из которых имели специальное образование, а некоторые и докторскую степень.

Обогащенный уран начал поступать в Лос-Аламос из Ок-Риджа в начале 1945 года. Отто Фриш, поселившийся на Холме вместе с другими британскими физиками, разработал хитроумный способ точно определить, сколько именно ядерного топлива понадобится для создания бомбы. Ученые уже имели большой опыт работы с конструкциями из уложенных друг на друга блоков гидрида урана. Массу приближали к критической, снижая долю водорода и пропорционально увеличивая содержание урана-235. Такая «голая» конструкция, которую Фриш называл «Леди Годива», была довольно опасна в эксплуатации. Сам Фриш получил изрядную долю радиации, когда прислонился к установке. От его тела отразилась часть нейтронов. Если бы не препятствие в виде тела ученого, нейтроны вылетели бы из конструкции. А так они вернулись обратно, и сборка стала критической. Фриш заметил, как маленькие красные лампочки, индикаторы интенсивности нейтронов, перестали мигать – они ярко светились, а счетчики нейтронов были перегружены. Фриш поспешно остановил эксперимент.

Поделиться:
Популярные книги

Заплатить за все

Зайцева Мария
Не смей меня хотеть
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Заплатить за все

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Восход. Солнцев. Книга VI

Скабер Артемий
6. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга VI

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Последняя Арена

Греков Сергей
1. Последняя Арена
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.20
рейтинг книги
Последняя Арена

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Наваждение генерала драконов

Лунёва Мария
3. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наваждение генерала драконов

Смерть может танцевать 2

Вальтер Макс
2. Безликий
Фантастика:
героическая фантастика
альтернативная история
6.14
рейтинг книги
Смерть может танцевать 2

Огненный князь 2

Машуков Тимур
2. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 2

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка