Биология. Общая биология. Базовый уровень. 10 класс
Шрифт:
Определение полового хроматина. Шведским исследователем Барром было обнаружено, что в ядрах соматических неделящихся клеток у самок высших животных внутри ядра около мембраны присутствует окрашенное тельце (подобной структуры в клетках самцов нет). Учёный предложил назвать эту структуру половым хроматином. Позже эту структуру стали называть тельцем Барра. Выяснилось, что половой хроматин – это суперспирализованный участок одной из Х– хромосом. За счёт наличия двух Х – хромосом женский организм содержит больше генетической информации. Для выравнивания числа генов у мужских и женских особей участок в одной Х – хромосоме суперспирализуется. Таким образом, в норме в ядре клеток женского организма находится одно тельце Барра, а в клетках мужского – ни
Близнецовый метод. Близнецовый метод позволяет изучить закономерности наследования признака, установить, обусловлено ли фенотипическое проявление признака действием только генотипа или признак развивается под влиянием факторов внешней среды.
Метод основан на сравнении двух типов близнецов. Однояйцевые, или монозиготные, близнецы, как показывает само название, развиваются из одной оплодотворённой яйцеклетки (зиготы). На ранней стадии дробления возможно отделение делящихся клеток друг от друга и разделение зародыша на две части, каждая из которых начинает развиваться самостоятельно, как отдельный организм. Разнояйцевые, или дизиготные, близнецы образуются при оплодотворении двух (и более) яйцеклеток и с самого начала развития представляют собой разные организмы.
С генетической точки зрения монозиготные близнецы полностью идентичны, у них 100 % генов одинаковые. Поэтому различия между монозиготными близнецами можно отнести только на счёт средовых влияний. Дизиготные близнецы так же близки, как обычные дети одних и тех же родителей (общими являются приблизительно 50 % генов). В отличие от монозиготных близнецов, дизиготные близнецы могут быть разнополыми. Оценивая внутрипарное сходство монозиготных и дизиготных близнецов, можно сделать вывод о том, что в первую очередь влияет на развитие конкретного признака – среда или генотип.
Существенно дополнить классический вариант близнецового метода позволяют данные по разлучённым монозиготным близнецам, которые воспитывались в разных семьях. Это даёт возможность оценить воздействие разных сред на одинаковые генотипы и тем самым сделать вывод о том, что определяет развитие конкретного признака: среда или генотип изучаемого человека.
Генеалогический метод. Генеалогический метод (метод родословных) позволяет определить характер наследования признака и прогнозировать появление признака (как нормального, так и патологического) в следующем поколении.
Метод состоит из двух последовательных этапов: составление родословной с её графическим изображением (генеалогического дерева) и анализ полученных данных.
Составление родословной. Сбор сведений о семье начинается с пробанда – индивида, чья родословная составляется. Детей одной родительской пары (братьев и сестёр) называют сибсами. Чем больше поколений вовлекается в родословную, тем она, как правило, точнее. Для графического отображения родословной используют общепринятые стандартные символы (рис. 101). Поколения обозначают римскими цифрами. Последнее (самое старшее) поколение обозначают как поколение I. Арабскими цифрами нумеруют родственников одного поколения (весь ряд). Братья и сёстры располагаются в порядке рождения (от старших к младшим), таким образом, каждый член родословной имеет свой шифр. Все индивиды одного поколения должны располагаться строго в один ряд.
Генеалогический анализ родословной. Первая задача при анализе родословной – установление наследственного характера заболевания. Если в родословной один и тот же признак (болезнь) встречается несколько раз, то можно думать о его наследственной природе. Однако следует исключить возможность фенокопии (заболевание как будто бы передаётся, в то время как его причиной является некий постоянно действующий средовой фактор).
Рис. 101. Стандартные символы, принятые для составления родословных
После установления наследственного характера патологии определяется тип наследования.
Менделевским закономерностям наследования подчиняются только моногенные патологии (мутация одного гена). В зависимости от локализации и свойств гена различают аутосомно – доминантный и аутосомно-рецессивный типы наследования, когда ген расположен в одной из 22 пар аутосом (неполовых хромосом), Х – сцепленные доминантные и рецессивные типы наследования (ген расположен в Х– хромосоме), Y – сцепленное (голандрическое) наследование, а также митохондриальное (материнское, или цитоплазматическое) наследование, когда мутация происходит в геноме митохондрий.
Популяционно-статистический метод. Популяционно-статистический метод позволяет оценить частоту встречаемости признака и генотипа в определённой популяции, изучить генетическую структуру популяции (этнических групп, национальностей, групп компактного проживания).
В основе этого метода лежит закон, открытый ещё более ста лет назад. В 1908 г. его независимо друг от друга сформулировали английский математик Годфри Харди и немецкий врач Вильгельм Вайнберг. В настоящее время этот закон носит их имя – закон Харди-Вайнберга. Согласно этому закону, частота гомозиготных и гетерозиготных организмов в условиях свободного скрещивания при отсутствии давления отбора и других факторов (мутационного процесса, миграции, дрейфа генов и т. д.) остаётся постоянной, т. е. популяция находится в состоянии генетического равновесия. Таким образом, этот закон описывает взаимоотношения между частотами встречаемости аллелей в исходной популяции и частотой генотипов, включающих эти аллели, в дочерней популяции.
Рассмотрим популяцию, в которой некий ген находится в двух аллельных состояниях (A и a). Если частоту аллеля А обозначить как pA, a частоту аллеля а как qa, то pA + qa = 1. Возможные скрещивания в данной популяции можно записать следующим образом: (pA + qa)
Такое соотношение частот аллелей и генотипов будет поддерживаться в популяции неопределённо долгое время. Зная частоты генотипов, можно рассчитать частоты аллелей, и наоборот, зная частоты аллелей, можно определить частоты генотипов и, следовательно, предсказать соотношение фенотипов.
Рассмотрим конкретный пример, чтобы понять, как можно использовать знание закона Харди – Вайнберга.
Наследственная метгемоглобинемия [7] наследуется как рецессивный признак. В популяции эскимосов Аляски болезнь встречается с частотой 0,09 %. Определите частоту гетерозигот (носителей рецессивного аллеля) в популяции. На какое число людей приходится один носитель рецессивного аллеля?
7
Метгемоглобинемия – повышенное (более 1 %) содержание метгемоглобина в эритроцитах периферической крови. Метгемоглобин, в отличие от гемоглобина, не переносит кислород.