Большая энциклопедия техники
Шрифт:
Каналы непрерывных динодов производят из стекла с высоким содержанием свинца. Подобные каналы после термообработки в H2 обладают удельным сопротивлением поверхностного слоя 107—1010 Ом x м.
Основными параметрами фотоэлектронных умножителей являются: световая анодная чувствительность – при номинальных потенциалах электродов отношение анодного фототока к провоцирующему его световому потоку, составляет 1—104 А/лм; спектральная чувствительность, которая равна спектральной чувствительности фотокатода, помноженной на коэффициент усиления умножительной системы, находящейся, как правило, в пределах 103—108; темновой ток – ток в анодной
Наибольшее использование фотоэлектронные умножители получили в ядерной физике (спектрометрические фотоэлектронные умножители) и в установках для изучения недолговременных процессов (временные фотоэлектронные умножители). Фотоэлектронные умножители применяют также в оптической аппаратуре, устройствах лазерной и телевизионной техники.
В 1960-х гг. разработаны фотоэлектронные умножители, в которых усиление фототока производится с помощью бомбардировки полупроводникового кристалла с электронно-дырочным переходом электронами с энергиями, которых достаточно для получения в кристалле парных зарядов электрон – дырка (подобные фотоэлектронные умножители называются гибридными).
Фотоэлектрический усилитель
Фотоэлектрический усилитель – усилитель постоянного напряжения или тока, действие которого базируется при освещении включенного в электрическую цепь светочувствительного элемента (фоторезистора, фотоэлемента) на увеличении тока в ней. Ток в цепи светочувствительного элемента зависит от площади освещаемой поверхности светочувствительного элемента и от яркости источника света. В соответствии с этим фотоэлектрические усилители делятся на две группы: к первой можно отнести фотоэлектрогазоразрядные, фотоэлектролюминесцентные и фотоэлектронакальные фотоэлектрические усилители, используемые в качестве фотоэлектрических элементов автоматики для фиксации и регулирования различных процессов; во вторую входят фотогальванометрические компенсационные усилители и фотоэлектрооптические усилители, применяемые в качестве элементов точных электроизмерительных устройств.
Характрон
Харатрон – электроннолучевой прибор, применяемый в устройствах отображения информации для воспроизведения топографических знаков, цифр, букв и других символов.
Сконструирован в 1941 г. в США; относится к электронно-лучевым знакопечатающим приборам мгновенного действия.
Воспроизводимые на экране характрона символы образуются при помощи трафарета – непрозрачной пластинки с последовательностью микроотверстий (от 64 до 200) в виде отображаемых символов. Данная пластина помещается между двумя отклоняющими системами на пути электронного луча к экрану: одна из них необходима для направления луча на необходимый символ трафарета, а вторая – для направления уже сформированного луча на нужное место на экране. Проходя сквозь трафарет, луч в поперечном сечении приобретает форму отверстия, в результате чего в месте падения луча на экране характрона высвечивается не точка (как в стандартных электронно-лучевых устройствах), а изображение отверстия, через которое прошел луч, т. е. изображение необходимого символа.
Цифровая вычислительная машина
Цифровая вычислительная машина преобразует величины, представленные в виде набора цифр (чисел). Элементарные преобразования чисел, которые известны с древнейших времен, – это арифметические действия (вычитание и сложение). Однако арифметические операции являются частными случаями преобразований величин, которые заданы в цифровой форме, и в современных ЦВМ они образуют только небольшую часть всего набора операций, которые машина производит над числами.
Первыми устройствами для элементарных вычислений являлись счеты (абаки): с их помощью производились арифметические операции – сложение и вычитание. Данные инструменты избавляли человека от запоминания таблицы сложения и записывания промежуточных результатов вычислений, так как в те времена бумага (либо ее аналог) и пишущие приспособления были редкостью.
Важным шагом в развитии вычислительных приборов явилось изобретение Б. Паскалем в 1641 г. суммирующей машины. В машинах Паскаля всем цифрам соответствовало конкретное положение разрядного колеса, которое разделено на 10 секторов. Сложение в подобной машине производилось поворотом колеса на определенное количество секторов.
Идея использовать вращение колеса для производства операции сложения (вычитания) высказывалась и до Паскаля (например, профессором В. Шиккардом в 1623 г.), однако главным элементом в машинах Паскаля являлся автоматический перенос единицы в старший разряд при полном обороте колеса предшествующего разряда.
Именно это позволило складывать многозначные числа без участия человека в работе механизма. Этот принцип применялся на протяжении почти трехсот лет (середина XVII – начало XX в.) при построении арифмометров (работающих от движения руки) и клавишных электрических вычислительных машин, имеющих привод от электродвигателя.
Первые вычислительные машины производили следующие простейшие операции: вычитание и сложение, перенос единицы в старший разряд при сложении (либо заем единицы при вычитании), сдвиг (перемещение каретки в арифмометрах вручную, в электрических машинах автоматически), умножение (деление) производилось последовательными сложениями (вычитаниями). При этом функции машины и человека в процессе вычислений разделялись следующим образом: машина производила арифметические операции над числами, человек следил за ходом вычислительного процесса, вводил в машину новые числа, записывал результаты (промежуточные и окончательные), искал по таблицам значения разных функций, которые входили в расчет. При подобном распределении ролей увеличение скорости выполнения машиной арифметических операций только незначительно повышало скорость вычислений в общем, так как процедуры, которые выполнялись человеком, составляли значительную часть вычислительного процесса. Поэтому, несмотря на то что техническая скорость электрических вычислительных машин в теории допускала осуществление до 1000 арифметических операций в 1 ч, на практике скорость вычислений была не более 1000 операций на протяжении 8-часового рабочего дня.
Еще одним шагом вперед в развитии техники ЦВМ явилось создание счетноперфорационных машин. В данных машинах все функции человека, кроме поиска по таблицам, осуществлялись машиной. Однако для ввода начальных данных их нужно было предварительно записать на перфорационные карты. Подобная операция производилась человеком на специальном устройстве. В машину вводилась стопка подготовленных перфокарт, и потом уже без вмешательства человека машина считывала имеющиеся в них данные и производила все необходимые вычислительные операции. Промежуточные результаты вычислений вносились в запоминающие регистры, итоговые печатались на бумаге (либо выводились на перфокарты, а затем специальное устройство вновь перепечатывало их на бумагу с перфокарт). Порядок действий счетно-перфорационной машины задавался на коммутационной доске специальной коммутацией электрических связей.
Таким образом, в счетно-перфорационных машинах в зачатке уже имелись все важнейшие элементы автоматической ЦВМ, которая работает без участия человека, после того как требуемая подготовка для произведения ей вычислительного процесса была окончена. Счетно-перфорационные машины содержали арифметическое устройство, память (в виде стопки перфокарт и регистров, предназначенных для запоминания промежуточных результатов), устройство вывода и ввода данных. В подобных машинах арифметические операции производились так же, как и в арифмометрах, с помощью механических перемещений, что сильно сокращало их быстродействие. Однако управление вычислительным процессом у этих машин было наиболее проблематичным. Так как управление (задание последовательности простейших операций) производилось путем соответствующих соединений проводами клемм коммутационной доски, то только несложные последовательности вычислительных операций могли быть реализованы на практике. Данные операции могли повторяться неоднократно, поэтому счетно-перфорационные машины широко использовались в тех случаях, когда решение задачи заключалось в повторении простых наборов операций, например при решении задач бухгалтерского учета, элементарных задач статистического анализа; наиболее сложными для решения на счетно-перфорационных машинах являлись обыкновенные линейные дифференциальные уравнения второго порядка.