Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (МУ)
Шрифт:

Значение мутаций для эволюции, селекции и медицины. Основы понимания роли М. в эволюции были заложены в 20-х гг. 20 в. работами советского генетика С. С. Четверикова , английских учёных Дж. Холдейна и Р. Фишера и американского учёного С. Райта, положивших начало развитию эволюционной генетики. Было показано, что все наследственные изменения, служащие материалом для эволюции, обязаны М. (комбинативная изменчивость, возникающая путём образования новых сочетаний генов при скрещивании, в конечном счёте, тоже есть следствие М., обусловливающих генетические различия скрещивающихся особей). В отличие от модификаций , М. не являются однозначной реакцией на вызывающее их воздействие: один и тот же мутагенный фактор приводит к возникновению разнообразных М., затрагивающих те или иные признаки организма и изменяющих их в разных направлениях. Поэтому сами по себе М. не имеют адаптивного характера. Однако постоянно возникающие у любого вида живых существ М., многие из которых к тому же длительно сохраняются в популяции

в скрытом виде (рецессивные М.), служат резервом наследственной изменчивости, который позволяет естественному отбору перестраивать наследственные признаки вида, приспосабливая его к меняющимся условиям среды (изменению климата или биоценоза, переселению в новый ареал и т. п.). Т. о., адаптивность эволюционных изменений — следствие сохранения естественным отбором носителей тех М. и их сочетаний, которые оказываются полезными в данной обстановке. При этом М., бывшие в одних условиях вредными или нейтральными, могут оказаться полезными в изменившихся условиях. Наибольшее значение для эволюции имеют генные М. Несмотря на относительную редкость М. каждого гена, общая частота спонтанных генных М. весьма значительна, т. к. генотип многоклеточных организмов состоит из десятков тысяч генов. В результате ту или иную генную М. несёт большая доля образуемых организмом гамет или спор (у высших растений и животных эта доля достигает 5—30%), что создаёт предпосылки для эффективного действия естественного отбора. Хромосомные перестройки, затрудняющие рекомбинацию, — инверсии и транслокации — способствуют репродуктивной изоляции отдельных групп организмов и их последующей дивергенции (см. Видообразование ); дупликации ведут к увеличению числа генов в генотипе и возрастанию их разнообразия вследствие происходящей затем дифференциации генов в дуплицированных участках хромосом. Полиплоидия играет большую роль в эволюции растений; при этом, помимо репродуктивной изоляции, она в ряде случаев восстанавливает плодовитость бесплодных межвидовых гибридов.

С разработкой способов искусственного мутагенеза открылась возможность значительного ускорения селекции — селекционерам стал доступен гораздо больший исходный материал, чем при использовании редких спонтанных мутаций. В 1930 советские учёные А. А. Сапегин и Л. Н. Делоне впервые применили ионизирующую радиацию в селекции пшеницы. В дальнейшем методами радиационной селекции были выведены новые высокоурожайные сорта пшеницы, ячменя, риса, люпина и др. с.-х. растений, ценные штаммы микроорганизмов, используемых в промышленности. В селекции с хорошими результатами применяются и химические мутагены.

Геномные М., хромосомные перестройки и генные М. — причина многих наследственных заболеваний и врождённых уродств у человека. Поэтому ограждение человека от действия мутагенов — важнейшая задача. Огромное значение в этом отношении имело осуществлённое по инициативе СССР запрещение испытаний ядерного оружия в атмосфере, загрязняющих окружающую среду радиоактивными веществами. Очень важно тщательное соблюдение мер защиты человека от радиации в атомной индустрии, при использовании радиоактивных изотопов, рентгеновских лучей и т. п. Необходимо изучение возможного мутагенного действия различных новых лекарственных средств, пестицидов, химических препаратов, применяемых в промышленности, и запрещение производства тех из них, которые окажутся мутагенными. Профилактика вирусных инфекций имеет значение и для защиты потомства от мутагенного действия вирусов. См. также Генетика , Генетика микроорганизмов , Изменчивость , Молекулярная генетика , Радиобиология .

Лит.: Супермутагены. Сб. ст., М., 1966; Лобашев М. Е., Генетика, 2 изд., Л., 1967, гл. 11, 14; Гершкович И., Генетика, пер. с англ., М., 1968, гл. 11—14, 30, 31; Сойфер В. Н., Молекулярные механизмы мутагенеза, М., 1969; Дубинин Н. П., Общая генетика, М., 1970, гл. 17, 20; Ратнер В. А., Принципы организации и механизмы молекулярно-генетических процессов, Новосиб., 1972, гл. 3; Serra J. A., Modern genetics, v. 3, L.-N. Y., 1968, ch. 20—22; Auerbach C., Kilbey B. J., Mutation in Eukaryotes, «Annual Review of Genetics», 1971, v. 5, p. 163; Banks G. R., Mutagenesis: a review of some molecular aspects, «Science Progress», 1971, v. 59, № 236.

С. М. Гершензон.

Мутантные формы ячменя: поздняя полегающая (слева) и ранняя неполегающая (справа).

Соматические мутации, вызванные у растений ионизирующей радиацией (рентгеновские или гамма-лучи): появление белой окраски в красных цветках табака (1) и двух сортов львиного зева (2 и 3); на рис. 3 (слева) — нормальный цветок, справа — мутировавший после облучения.

Мутации окраски и формы глаз у плодовой мушки — дрозофилы: 1 — дикий тип — тускло-красные глаза; мутантные формы: 2 — розовые глаза, 3 — белые глаза, 4 — уменьшенные, «плосковидные».

Мутации

окраски шерсти у домовой мыши: 1 — дикий тип — серая окраска; мутантные формы: 2 — белая, 3 — желтая, 4 — чёрная, 5 — коричневая, 6 — мелкокрапчатая.

Мутации окраски у канареек: 2 — дикий тип — зелёная; мутантные формы: 1 — жёлтая, 3 — пятнистая.

Мутации Ваагена

Мута'ции Ва'агена, разновидности одного и того же вида животных, сменяющие друг друга во времени. Термин введён в палеонтологию немецким учёным В. Ваагеном (W. Waagen; 1869) для обозначения форм одного и того же вида аммонитов, последовательно сменяющих друг друга в слоях разного возраста (в качестве примера им взята Oppelia subradiata из юрских отложений Германии). Смена этих форм, по Ваагену, определяется внутренними факторами развития вида; внешние условия могут только незначительно влиять на скорость этого процесса. Дальнейшее развитие учение о М. В. получило в работах австрийского учёного М. Неймайра (1875, 1880, 1889) по плиоценовым моллюскам Юго-Восточной Европы. Позже, для обозначения постепенного изменения какого-либо признака в популяциях или видах, сменяющих друг друга во времени, стали применять близкий по значению термин хроноклин (предложен американским учёным Дж. Симпсоном, 1943).

Мутационизм

Мутациони'зм, концепция в биологии, рассматривающая эволюцию как скачкообразный процесс, происходящий в результате крупных единичных наследственных изменений. Согласно М., подобные изменения, называются макромутациями, или сальтациями, возникая у особей исходного вида, сразу создают новые жизненные формы, которые при наличии благоприятных условий среды становятся родоначальниками новых видов. Рассматривая в качестве движущей силы эволюции внутренний по отношению к организму фактор — изменения наследственности, М. отрицает творческую роль естественного отбора , отводя ему значение фактора, ограничивающего разнообразие жизненных форм (посредством устранения вариантов организации, не соответствующих окружающей среде). В этом М. близок к автогенезу , от которого отличается отрицанием непрерывности эволюции. М. не представляет собой единой теории — это течение эволюционизма поддерживали разные авторы и с различных позиций. Основателем М. является Х. Де Фриз , создавший мутационную теорию эволюции. Подобные взгляды лежат в основе теории преадаптации (французский биолог Л. Кено), сальтационной теории (немецкий биолог Р. Гольдшмидт ) и ряда менее известных концепций.

Лит.: Современные проблемы эволюционной теории, Л., 1967; Шмальгаузен И. И., Проблемы дарвинизма, 2 изд., Л., 1969; Goldschmidt R., The material basis of evolution, New Haven — L., [1944]; Cuenot L., L''evolution biologique, P., 1951.

А. С. Северцов.

Мутационная теория

Мутацио'нная тео'рия, теория изменчивости и эволюции, созданная в начале 20 в. Х. Де Фризом . Согласно М. т., из двух категорий изменчивости — непрерывной и прерывистой (дискретной), только последняя наследственна; для её обозначения Де Фриз ввёл термин мутации . По Де Фризу, мутации могут быть прогрессивными — появление новых наследственных свойств, что равнозначно возникновению новых элементарных видов, или регрессивными — утрата какого-либо из существующих свойств, что означает возникновение разновидностей. Новые элементарные виды, или жорданоны (см. Вид ), возникают путём прогрессивных мутаций внезапно, без переходов и обычно сразу наследственно постоянны. Массовое появление мутаций приурочено к особым редким мутационным периодам, чередующимся в жизни каждого вида с длительными периодами покоя. Выводы Де Фриза опирались главным образом на наблюдения, сделанные им на растении энотера (Oenothera lamarkiana), и в своё время существенно ускорили анализ явлений изменчивости, однако развитие генетики уже в первые два десятилетия 20 в. опровергло все основные положения М. т.

Сходную систему представлений об изменчивости и эволюции разработал С. И. Коржинский (1899), описавший большое число доказанных случаев внезапного возникновения единичных (не связанных с предшествующими скрещиваниями или влиянием условий произрастания) дискретных наследственных изменений у растений. Такие изменения он назвал гетерогенными вариациями, построив теорию эволюции путём гетерогенеза. Гетерогенные вариации Коржинского по смыслу ближе к современному содержанию термина «мутации», чем мутации Де Фриза. Признание основного эволюционного значения за дискретной изменчивостью и отрицание роли естественного отбора в теориях Коржинского и Де Фриза было связано с неразрешимостью в то время противоречия в эволюционном учении Ч. Дарвина между важной ролью мелких уклонений и их «поглощением» при скрещиваниях. Это противоречие было преодолено после создания современных представлений о наследственности и их синтеза с эволюционным учением, осуществленного С. С. Четвериковым (1926). См. также Дарвинизм , Менделизм .

Поделиться:
Популярные книги

Заставь меня остановиться 2

Юнина Наталья
2. Заставь меня остановиться
Любовные романы:
современные любовные романы
6.29
рейтинг книги
Заставь меня остановиться 2

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Игрок, забравшийся на вершину. Том 8

Михалек Дмитрий Владимирович
8. Игрок, забравшийся на вершину
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Игрок, забравшийся на вершину. Том 8

Физрук: назад в СССР

Гуров Валерий Александрович
1. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук: назад в СССР

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Энфис 5

Кронос Александр
5. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 5

Хочу тебя навсегда

Джокер Ольга
2. Люби меня
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Хочу тебя навсегда

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV

Волк 5: Лихие 90-е

Киров Никита
5. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 5: Лихие 90-е

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Ученик

Первухин Андрей Евгеньевич
1. Ученик
Фантастика:
фэнтези
6.20
рейтинг книги
Ученик

Не грози Дубровскому! Том IX

Панарин Антон
9. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том IX