Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (РИ)
Шрифт:

Кривые, касательный вектор к которым переносится вдоль них параллельно, называются геодезическими соответствующей связности; они совпадают с римановыми геодезическими, если тензор

кососимметричен по всем индексам.

Подпространства. На m– мерном подмногообразии М риманова пространства R, задаваемом уравнениями xi= xi (u1,..., um), причём ранг матрицы

 равен m,
имеет место Р. г., определяемая метрическим тензором

М называется римановым подпространством пространства R.

Достаточно малая область m– мерного риманова пространства R может быть погружена в евклидово пространство достаточно большой размерности N (т. е. допускает сохраняющее длины отображение на подмногообразие этого пространства). Известно, что

; вопрос о минимальном значении N в общем случае ещё не решен, однако если коэффициенты метрической формы gij пространства R являются аналитическими функциями (т. е. разлагаются в сходящиеся степенные ряды), то
. Относительно задачи погружения в целом (представляющей интерес для физики калибровочных полей) известно ещё меньше.

Наиболее подробно исследованы погружения двумерных римановых пространств. Так, например: 1) двумерное полное риманово пространство положительной кривизны К. погружается в виде замкнутой выпуклой поверхности (овалоида) в трёхмерное риманово пространство кривизны не меньшей К [проблема Г. Вейля(1916), решенная немецким математиком Х. Леви (1937) и А. Д. Александровым(1941) для погружения в евклидово пространство и А. В. Погореловым (1957) для риманова пространства], причём любые два погружения, имеющие общую точку и общее соприкасающееся пространство в ней, совпадают [т. е. овалоид однозначно определён своей метрикой, немецкий математик С. Э. Кон-Фоссен (1927), А. В. Погорелов (1948)]. 2) Двумерное полное риманово пространство отрицательной кривизны K lb Ko < 0 не допускает погружения в виде регулярной поверхности [советский математик Н. В. Ефимов (1963), частный случай плоскости Лобачевского (К =1) разобран Д. Гильбертом (1901)]. 3) Двумерное риманово пространство, гомеоморфное тору, допускает погружение в четырёхмерное евклидово пространство [советский математик Э. Г. Позняк (1973)].

Приложения и обобщения римановой геометрии. 1) Поскольку Р. г. определяется заданием дважды ковариантного симметричного тензора, постольку всякую физическую задачу, сводящуюся к изучению такого тензорного поля, можно формулировать как задачу Р. г. В частности, к тензорным полям такого типа относятся различные физические величины, характеризующие упругие, оптические, термодинамические, диэлектрические, пьезомагнитные и другие свойства анизотропных тел. При этом симметрия коэффициентов gijявляется отражением одного из фундаментальных физических законов — закона взаимности. Так, задача о теплопроводности анизотропного тела, решенная ещё Риманом (1861), явилась первым приложением Р. г.

2) Рассмотрение конфигурационного пространства в механике системы с n степенями свободы позволило представить в ясной геометрической форме ряд механических задач. Так, например, траектории свободного (т. е. в отсутствии обобщённых сил) движения голономной механической системы с кинетической энергией

где

  обобщённые скорости, являются геодезическими соответствующего n– мерного риманова пространства с метрическим тензором gij. О некоторых других фактах упоминалось выше. Аналогичную интерпретацию получает и движение в поле сил, имеющих потенциал (см. Герца принцип).

3) В приложениях Р. г. к механике и физике важную роль играют дополнительные структуры, согласующиеся в том или ином смысле с метрикой риманова пространства. Так, например:

а) Физическим представлениям об упругой сплошной среде с непрерывным распределением источников внутренних напряжений соответствует риманово пространство с некоторой метрической связностью: параллельное перенесение, соответствующее ей, определяет так называемое естественное состояние среды вдоль кривой, а кручение отождествляется с плотностью дислокации;

б) римановы пространства с почти комплексной структурой (определяется полем один раз ковариантного и один раз контравариантного тензора

 такого, что

где

 — Кронекера символ) используются квантовой механикой для описания наблюдаемых и состояний систем многих частиц;

в) привлечение понятия так называемой конформной связности, т. е. связности риманова пространства, при которой результат параллельного перенесения метрического тензора gijпропорционален ему самому, позволило смоделировать некоторые из так называемых Бора постулатов, в частности избранные (или «разрешенные») орбиты движения электронов в атоме — кривые, вдоль которых метрический тензор сохраняется.

4) Развитие Р. г. в связи с общей теорией относительности (см. Тяготение) и механикой сплошных сред породило различные обобщения её предмета, главнейшими из которых являются так называемые псевдоримановы пространства. Таково, например, согласно теории тяготения, многообразие событий (многообразие пространства — времени) — четырёхмерное пространство с заданной на нём знаконеопределённой невырожденной квадратичной формой

(коэффициенты такой «метрики», допускающей мнимые расстояния, как раз и характеризуют поле тяготения, играя роль потенциальных функций). Эта форма в каждой точке пространства событий может быть приведена к виду

ds2= dx 2+ dy 2+ dz 2— dt 2

где х, у, z — пространственные координаты, t — время. Физически такие, так называемые локально галилеевы, системы отсчёта являются свободно падающими в поле тяготения. Однако ввести такую систему на всём многообразии невозможно (поскольку наличие поля тяготения математически выражается в кривизне псевдориманова пространства).

Другой путь обобщения Р. г. связан с рассмотрением более общих законов определения расстояний, задаваемых в виде линейного элемента ds (см. Финслерова геометрия), и более общих законов параллельного перенесения, а также с отказом от требований регулярности.

Лит.: Риман Б., Соч., пер. с нем., М. — Л., 1948; Рашевский П. К., Риманова геометрия и тензорный анализ, 3 изд., М., 1967; Эйзенхарт Л. П., Риманова геометрия, пер. с англ., М., 1948; Схоутен Я. А., Тензорный анализ для физиков, пер. с англ., М., 1965; Громол Д., Клингенберг В., Мейер В., Риманова геометрия в целом, пер. с нем., М., 1971.

Поделиться:
Популярные книги

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Совок 4

Агарев Вадим
4. Совок
Фантастика:
попаданцы
альтернативная история
6.29
рейтинг книги
Совок 4

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Я князь. Книга XVIII

Дрейк Сириус
18. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я князь. Книга XVIII

Жандарм 5

Семин Никита
5. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 5

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Аномальный наследник. Том 1 и Том 2

Тарс Элиан
1. Аномальный наследник
Фантастика:
боевая фантастика
альтернативная история
8.50
рейтинг книги
Аномальный наследник. Том 1 и Том 2