Большая Советская Энциклопедия (ТЕ)
Шрифт:
Отклонения от закона Фурье могут появиться при очень больших значениях grad T (например, в сильных ударных волнах ), при низких температурах (для жидкого гелия Не II) и при высоких температурах порядка десятков и сотен тысяч градусов, когда в газах перенос энергии осуществляется не только в результате межатомных столкновений, но в основном за счёт излучения (лучистая Т.). В разреженных газах, когда l сравнимо с расстоянием L между стенками, ограничивающими объём газа, молекулы чаще сталкиваются со стенками, чем между собой. При этом нарушается условие применимости закона Фурье и само понятие локальной температуры газа теряет смысл. В этом случае рассматривают не процесс Т. в газе, а теплообмен между телами, находящимися в газовой среде. Процесс переноса теплоты —Т. — в сплошной среде описывается теплопроводности уравнением .
Для идеального газа , состоящего из твёрдых сферических молекул диаметром d, согласно кинетической теории газов ,
где r — плотность газа, cv — теплоёмкость единицы массы газа при постоянном объёме V,
где g = ср/cv, ср — теплоёмкость при постоянном давлении. В реальных газах коэффициент Т. — довольно сложная функция температуры и давления, причём с ростом Т и р значение l возрастает. Для газовых смесей l может быть как больше, так и меньше коэффициента Т. компонентов смеси, то есть Т. — нелинейная функция состава.
В плотных газах и жидкостях среднее расстояние между молекулами сравнимо с размерами самих молекул, а кинетическая энергия движения молекул того же порядка, что и потенциальная энергия межмолекулярного взаимодействия. В связи с этим перенос энергии столкновениями происходит значительно интенсивнее, чем в разреженных газах, и скорость передачи энергии молекул от горячих изотермических слоев жидкости к более холодным близка к скорости распространения малых возмущений давления, равной скорости звука, т. е.
Т. металлов определяется движением и взаимодействием носителей тока — электронов проводимости. В общем случае для металла коэффициент Т. равен сумме решёточной фононной lреш и электронной lэ составляющих: l = lэ + lреш , причём при обычных температурах, как правило, lэ ³ lреш . В процессе теплопроводности каждый электрон переносит при наличии градиента температуры энергию kT, благодаря чему отношение электронной части коэффициента Т. lэ, к электрической проводимости s в широком интервале температур пропорционально температуре (Видемана — Франца закон ):
где k — Больцмана постоянная , е — заряд электрона. В связи с тем, что у большинства металлов lреш lb lэ , в законе Видемана — Франца можно с хорошей точностью заменить lэ на l . Обнаруженные отклонения от равенства (3) нашли своё объяснение в неупругости столкновений электронов. У полуметаллов Bi и Sb lреш сравнима с lэ , что связано у них с малостью числа свободных электронов.
Явление переноса теплоты в полупроводниках сложнее, чем в диэлектриках и металлах, во-первых, в связи с тем, что для них существенны обе составляющие Т. (lэ и lреш ), а, во-вторых, в связи со значительным влиянием на коэффициент Т. примесей, процессов биполярной диффузии, переноса экситонов и др. факторов.
Влияние давления на l твёрдых тел с хорошей точностью выражается линейной зависимостью l от р, причём у многих металлов и минералов l растет с ростом р.
Лит.: Лыков А. В., Теория теплопроводности, М., 1967; Рейф Ф., Статистическая физика, пер. с англ., М., 1972 (Берклеевский курс физики, т. 5); Робертс Дж., Теплота и термодинамика, пер. с англ., М.—Л., 1950; Гиршфельдер Дж., Кертисс Ч., Берд Р., Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; 3айман Дж., Принципы теории твердого тела, пер. с англ., М., 1966; Киттель Ч., Элементарная физика твердого тела, пер. с англ., М., 1965; Зельдович Я. Б., Райзер Ю. П., Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд., М., 1966.
С. П. Малышенко.
Теплопродукция
Теплопроду'кция, теплообразование, выработка теплоты в организме в результате энергетических превращений в живых клетках; связана с непрерывно совершающимся биохимическим синтезом белков и др. органических соединений, с осмотической работой (перенос ионов против градиента концентраций), с механической работой мышц (сердечная мышца, гладкие мышцы различных органов, скелетная мускулатура). Даже при полном мышечном покое такая работа в сумме достаточно велика, и человек среднего веса и возраста при оптимальной температуре среды (см. Тепловой комфорт ) освобождает около 1 ккал (4,19 кдж ) на кг массы тела в 1 ч (см. Теплоотдача ). В покое около 50% всей теплоты образуется в органах брюшной полости (главным образом в печени), по 20% в скелетных мышцах и центральной нервной системе и около 10% при работе органов дыхания и кровообращения. Т. называется также химической терморегуляцией.
У гомойотермных животных Т. на единицу массы тела увеличивается по мере уменьшения его размеров. У мыши, например, Т. на единицу массы тела больше, чем у человека, в 8—10 раз (о Т. у разных животных и человека см. табл. 1 и 2 в ст. Основной обмен ). Резко увеличивается Т. при мышечной работе, достигая 10-кратной от уровня покоя. На 10—20% возрастает Т. в первые часы после приёма пищи (специфически динамическое действие пищи). Кроме того, у человека и гомойотермных животных Т. усиливается при охлаждении. Эта защитная реакция основана на особой сократительной активности скелетных мышц (холодовая мышечная дрожь и терморегуляционный мышечный тонус). Если процессы Т. преобладают над процессами теплоотдачи, наступает перегревание организма . См. также Пойкилотермные животные , Температура тела . Терморегуляция .