Большая Советская Энциклопедия (УС)
Шрифт:
Лит. см. при ст. «Устойчивости мелкого крестьянского хозяйства» теория .
В. Д. Мартынов.
Устойчивость движения
Усто'йчивость движе'ния, одно из важнейших понятий механики. Движение любой механической системы, например машины, гироскопического устройства , самолёта, снаряда и т.п., зависит от действующих сил и т. н. начальных условий, т. е. от положений и скоростей точек системы в момент начала движения. Зная эти силы и начальные условия, можно теоретически рассчитать, как будет двигаться система. Движение, соответствующее этому расчёту, называется невозмущённым. Но поскольку все измерения производятся с той или иной степенью точности, то на практике истинные значения начальных условий будут обычно несколько отличаться от расчётных. Кроме того, механическая система может во время движения
Влияние начальных возмущений на характеристики движения системы (траектории её точек, их скорости и т.п.) может быть двояким. Если при достаточно малых начальных возмущениях каких-нибудь из характеристик во всё последующее время мало отличается от того значения, которое она должна иметь в невозмущённом движении, то движение системы по отношению к этой характеристике называется устойчивым. Если же при сколь угодно малых, но не равных нулю начальных возмущениях данная характеристика со временем будет всё более и более отличаться от значения, которое она должна иметь в невозмущённом движении, то движение системы по отношению к этой характеристике называется неустойчивым. Эти определения соответствуют определению У. д. по А. М. Ляпунову. Условия, при которых движение механической системы является устойчивым, называются критериями устойчивости.
В качестве примера рассмотрим гироскоп (волчок), ось которого вертикальна и который вращается вокруг этой оси с угловой скоростью (рис. ). Теоретически ось гироскопа должна оставаться вертикальной при любом значении w, но фактически, когда w меньше некоторой величины wкр, ось при любом малом возмущении (толчке) будет всё более отклоняться от вертикали. Если же w больше wкр , то малые возмущения практически направление оси не изменят. Следовательно, при w < wкр гироскоп по отношению к направлению его оси неустойчив, а при w> wкр устойчив. Последнее неравенство и является критерием устойчивости, при этом wкр =
Теория У. д. имеет важное практическое значение для многих областей техники, т.к. У. д. должны обладать различного рода двигатели, автомобили, самолёты, ракеты, гироскопические приборы, системы автоматического регулирования и др. В небесной механике проблема У. д. возникает при изучении вопроса о длительности сохранения структуры солнечной системы, двойных звёзд и др.
Лит.: Ляпунов А. М., Общая задача об устойчивости движения, М. – Л., 1950; Четаев Н. Г., Устойчивость движения, 2 изд., М., 1955; Дубошин Г. Н., Основы теории устойчивости движения, [М.], 1952; Красовский Н. Н., Некоторые задачи теории устойчивости движения, М., 1959; Малкин И. Г., Теория устойчивости движения, М. – Л., 1952; Меркин Д. Р., Введение в теорию устойчивости движения, М., 1971 (лит.).
К ст. Устойчивость движения.
Устойчивость (математич.)
Усто'йчивость решений дифференциальных уравнений, понятие качественной теории дифференциальных уравнений, разрабатывающееся особенно в связи с вопросами устойчивости движения в механике; имеет также важное значение для приложений в технике (например, радиотехнике).
Устойчивость основания
Усто'йчивость основа'ния, способность основания сооружения сопротивляться выпиранию грунта (из-под подошвы фундамента) под действием нагрузок, передаваемых сооружением. При действии начальной критической нагрузки нарушение прочности грунта происходит лишь в отдельных точках или заданной ограниченной области основания; в случае предельной нагрузки всё основание теряет устойчивость.
Устойчивость равновесия
Усто'йчивость равнове'сия. Равновесие механической системы устойчиво, если при малом возмущении (смещении, толчке) точки системы во всё последующее время мало отклоняются от их равновесных положений; в противном случае равновесие неустойчиво. Обычно при малых возмущениях точки системы, находящейся в положении устойчивого равновесия, совершают около своих равновесных положений малые колебания, которые вследствие сопротивлений со временем затухают, и равновесие восстанавливается. Более строго У. р. определяется и исследуется так же, как и устойчивость движения . В случае механической консервативной системы достаточное условие У. р. даётся теоремой Лагранжа – Дирихле, согласно которой равновесие устойчиво, если в положении равновесия потенциальная энергия системы минимальна. См. также Устойчивость упругих систем .
Устойчивость системы автоматического управления
Усто'йчивость системы автоматического управления, способность системы автоматического управления (САУ) нормально функционировать и противостоять различным неизбежным возмущениям (воздействиям). Состояние САУ называется устойчивым, если отклонение от него остаётся сколь угодно малым при любых достаточно малых изменениях входных сигналов. У. САУ разного типа определяется различными методами. Точная и строгая теория У. систем, описываемых обыкновенными дифференциальными уравнениями, создана А. М. Ляпуновым в 1892.
Все состояния линейной САУ либо устойчивы, либо неустойчивы, поэтому можно говорить об У. системы в целом. Для У. стационарной линейной СЛУ, описываемой обыкновенными дифференциальными уравнениями, необходимо и достаточно, чтобы все корни соответствующего характеристического уравнения имели отрицательные действительные части (тогда САУ асимптотически устойчива). Существуют различные критерии (условия), позволяющие судить о знаках корней характеристического уравнения, не решая это уравнение – непосредственно по его коэффициентам. При исследовании У. САУ, описываемых дифференциальными уравнениями невысокого порядка (до 4-го), пользуются критериями Рауса и Гурвица (Э. Раус, англ. механик; А. Гурвиц, нем. математик). Однако этими критериями пользоваться во многих случаях (например, в случае САУ, описываемых уравнениями высокого порядка) практически невозможно из-за необходимости проведения громоздких расчётов; кроме того, само нахождение характеристических уравнений сложных САУ сопряжено с трудоёмкими математическими выкладками. Между тем частотные характеристики любых сколь угодно сложных СЛУ легко находятся посредством простых графических и алгебраических операций. Поэтому при исследовании и проектировании линейных стационарных САУ обычно применяют частотные критерии Найквиста и Михайлова (Х. Найквист, амер. физик; А. В. Михайлов, сов. учёный в области автоматического управления). Особенно прост и удобен в практическом применении критерий Найквиста. Совокупность значений параметров САУ, при которых система устойчива, называется областью У. Близость САУ к границе области У. оценивается запасами У. по фазе и по амплитуде, которые определяют по амплитудно-фазовым характеристикам разомкнутой САУ. Современная теория линейных САУ даёт методы исследования У. систем с сосредоточенными и с распределёнными параметрами, непрерывных и дискретных (импульсных), стационарных и нестационарных.
Проблема У. нелинейных САУ имеет ряд существенных особенностей в сравнении с линейными. В зависимости от характера нелинейности в системе одни состояния могут быть устойчивыми, другие – неустойчивыми. В теории У. нелинейных систем говорят об У. данного состояния, а не системы как таковой. У. какого-либо состояния нелинейной САУ может сохраняться, если действующие возмущения достаточно малы, и нарушаться при больших возмущениях. Поэтому вводятся понятия У. в малом, большом и целом. Важное значение имеет понятие абсолютной У., т. е. У. САУ при произвольном ограниченном начальном возмущении и любой нелинейности системы (из определённого класса нелинейностей). Исследование У. нелинейных САУ оказывается довольно сложным даже при использовании ЭВМ. Для нахождения достаточных условий У. часто применяют метод функций Ляпунова. Достаточные частотные критерии абсолютной У. предложены рум. математиком В. М. Поповым и др. Наряду с точными методами исследования У. применяются приближённые методы, основанные на использовании описывающих функций, например методы гармонической или статистической линеаризации .
Устойчивость САУ при воздействии на неё случайных возмущений и помех изучается теорией У. стохастических систем.
Современная вычислительная техника позволяет решать многие проблемы У. линейных и нелинейных САУ различных классов как путём использования известных алгоритмов , так и на основе новых специфических алгоритмов, рассчитанных на возможности современных ЭВМ и вычислительных систем.
Лит.: Ляпунов А. М., Общая задача об устойчивости движения, Собр. соч., т. 2, М. – Л., 1956; Воронов А. А., Основы теории автоматического управления, т, 2, М. – Л., 1966; Наумов Б. Н., Теория нелинейных автоматических систем. Частотные методы, М., 1972; Основы автоматического управления, под ред. В. С. Пугачева, 3 изд., М., 1974.