Большое космическое путешествие
Шрифт:
Обсудим, что такое сила. Закон Ньютона об инерции состоит из двух частей. Первая часть: «всякое тело сохраняет состояние покоя до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние». Это логично. Допустим, лежит на столе яблоко. На него не действует никакая сила, поэтому оно остается в покое.
Вторая часть ньютоновского закона об инерции формулируется не столь очевидно: «объект, равномерно движущийся с определенной скоростью, продолжит двигаться с той же скоростью, пока на него не подействует внешняя сила». «Равномерно» означает с одной и той же скоростью, в одном и том же направлении. Если запустить мячик по полу, то он не будет двигаться в этом направлении вечно и с постоянной скоростью, а замедлится и остановится. Ведь на него действует третья сила – трение между мячиком и полом. В обыденной жизни трение встречается
Идея о том, что движущееся тело так и будет двигаться с постоянной скоростью, если на него не действуют внешние силы, не очевидна, так как мы повсюду сталкиваемся с трением. Сложно вообразить обыденную ситуацию, в которой отсутствует всякое трение и, соответственно, нет воздействия внешних сил. Фигуристка почти не испытывает трения между коньками и льдом, поэтому она может сравнительно легко прокатываться по льду на большие расстояния. Когда трение стремится к нулю, объект достаточно подтолкнуть – и он станет двигаться с постоянной скоростью. Галилей это понял. Открытый космос предлагает самые яркие примеры отсутствия какого-либо трения. В космосе действительно можно запустить объект и не сомневаться, что он так и полетит равномерно с этой скоростью, поскольку ничто не встретится ему на пути. Ньютон сформулировал все эти принципы в виде базового закона.
Второй закон движения Ньютона описывает, что происходит с объектом, на который воздействует сила. На объект могут действовать разнообразные силы, но, независимо от конкретных сил, именно их сумма дает отклонение от равномерной скорости. Чтобы количественно выразить такое отклонение, используется термин «ускорение»: ускорение – это изменение скорости за единицу времени. Следовательно, второй закон соотносит ускорение объекта с силой, действующей на него. Если подтолкнуть объект с некоторой силой, то объект ускорится. Если объект обладает небольшой массой, то ускорение будет велико; с другой стороны, приложив ту же силу к более массивному объекту, мы сообщим ему меньшее ускорение. Данное отношение описывается самым знаменитым уравнением Ньютона F= ma: сила равна произведению массы на ускорение.
Третий закон Ньютона можно «запросто» сформулировать так: «Ты толкаешь меня – я толкаю тебя». Таким образом, если одно тело с силой воздействует на другое, то второе тело воздействует на первое с равной, но противоположно направленной силой. Если хлопнуть рукой по столешнице, то ощущается отдача: сопротивление стола. Сила действия равна силе противодействия.
Допустим, у вас на ладони лежит яблоко. Определенно оно находится в покое. Действуют ли на него какие-либо силы? Да, земная гравитация. Яблоко должно с ускорением лететь вниз, но этого не происходит. Дело в том, что вы удерживаете его рукой, словно подталкиваете вверх (на это затрачивается ваша мышечная сила). По третьему закону Ньютона, яблоко давит на ладонь – так ощущается вес яблока. Сила притяжения Земли действует на яблоко вниз, а сила вашей руки толкает яблоко вверх. Две эти силы компенсируют друг друга, их сумма равна нулю. Нулевая сила означает нулевое ускорение по второму закону Ньютона. Поэтому яблоко остается в покое и никуда не катится.
На самом деле все еще интереснее. Выше мы вычислили, что Земля облетает Солнце по кругу со скоростью 30 км/с, а значит, и яблоко движется с той же скоростью. Чтобы разобраться с этим, давайте сделаем отступление и поговорим о природе кругового движения.
При движении Земли по кругу со скоростью 30 км/с ее скорость является постоянной, но не является равномерной, так как направление движения Земли постоянно изменяется. Если бы направление не менялось, то Земля бы просто улетела по прямой, а не вращалась по кругу. Ускорение, возникающее при движении по кругу, встречается и в повседневной жизни. В развлекательных парках есть разнообразные аттракционы-горки, и на них такое ускорение пробирает вас насквозь.
Чтобы определить ускорение, испытываемое объектом, который движется с постоянной скоростью v по кругу радиусом r, Ньютон воспользовался собственноручно изобретенным дифференциальным исчислением. Такое ускорение равно v2/r, оно направлено к центру круга. Яблоко у вас на ладони, которое кажется неподвижным,
Мы летим вокруг Солнца со скоростью 30 км/c. Учитывая, как велика эта скорость, кажется, что результирующее ускорение также должно быть огромным, но ускорение на самом деле невелико, поскольку радиус круга огромен. Давайте посчитаем. Скорость Земли равна 30 км/c или 30 000 м/c, а радиус земной орбиты – 150 000 000 000 м. По формуле v2/r ускорение a равно (30 000 м/c)2/150 000 000 000 м = 0,006 м/с2, или 0,006 метра в секунду за секунду. Таким образом, скорость Земли ежесекундно меняется на 6 миллиметров в секунду. Величина крошечная. Галилей открыл, что тела падают на Землю под действием земного притяжения с ускорением примерно 9,8 метра в секунду за секунду, это значение гораздо больше. Следовательно, пусть мы и летим вокруг Солнца с огромной скоростью, Земля при этом ускоряется совершенно незначительно. Напротив, на американских горках наша скорость куда ниже 30 км/c, но радиус круга, по которому мы движемся, крохотный; подставив это меньшее значение r в формулу v2/r, получаем довольно большое ускорение, которое весьма ощутимо. (Так, если радиус горок – 10 метров, а вы летите по ним со скоростью 10 м/c, то получается ускорение 10 метров в секунду за секунду).
Если попытаться проследить гравитационное воздействие Солнца, то складывается более тонкая ситуация. Солнечная гравитация сообщает одинаковое ускорение всем телам на Земле – вам, книге, которую вы держите, яблоку на ладони. Все мы вращаемся по околосолнечной орбите свободного падения. Нам только кажется, что мы неподвижны; просто мы не замечаем этого движения, равно как не замечаем и ускорения.
Но факт остается фактом: Земля вращается вокруг Солнца с ускорением, и это ускорение вычисляется по формуле v2/r. Далее Ньютон применил третий закон Кеплера, чтобы определить, как сообщаемое Солнцем ускорение изменяется в зависимости от радиуса. Период орбитального вращения планеты (P) равен
P = (2r/v);
следовательно, орбитальный период вычисляется как расстояние, проходимое планетой по орбите (2r), деленное на скорость (v). Таким образом:
P пропорционально r/v и
P2 пропорционально r2/v2.
Кеплер установил, что P2 пропорционально a3, где a — большая полуось планетной орбиты. В данном случае земная орбита почти круговая, поэтому можно приблизительно взять r = a. В таком случае, подставив r вместо a, находим:
P2 пропорционально r3.
ПосколькуP2 также пропорционально r2/v2,
r2/v2 пропорционально r3.
Разделив на r, получаем:
r/v2 пропорционально r2.