Большое космическое путешествие
Шрифт:
Абсолютно черное тело – это объект, поглощающий все входящее излучение. Абсолютно черное тело, имеющее определенную температуру, будет испускать так называемое «излучение черного тела», повторяющее контуры рассматриваемых кривых. Термин «абсолютно черное тело» может показаться неудачным, но это не так. Никто не спорит, что звезды – не черные; одна звезда сияет голубым, другая – белым, третья – красным. Но все они считаются абсолютно черными телами, как я и показал на рисунке. Абсолютно черное тело устроено просто: оно поглощает всю энергию, которую получает. Оно всеядно. Ему по вкусу и гамма-лучи, и радиоволны. Черные предметы поглощают всю попадающую на них энергию. Вот почему летом не стоит наряжаться в черное. Затем абсолютно черные тела переизлучают эти кривые – вот и всё. Контур и положение кривой зависят лишь от температуры абсолютно черного тела.
Можно нагреть предмет, повысить его температуру, а затем останется определить: какова новая температура? Затем мы возвращаемся к нашим кривым и смотрим, какой график соответствует новой температуре. Есть чудесное уравнение, описывающее эти кривые. Они являются функциями распределения и также именуются планковскими функциями в честь Макса Планка, который первым вывел уравнения для них. В правой части уравнения имеем энергию в единицу времени на единицу площади на единичный интервал длин волн при конкретной
I (T) = (2hc2/ 5)/(ehc/ kT – 1).
Давайте разберемся, какие элементы входят в это эпохальное уравнение. Во-первых, здесь есть (лямбда), это длина волны, с ней все понятно. Постоянная e – это основание натуральных логарифмов, под нее выделена специальная клавиша на любом инженерном калькуляторе, на которой обычно написано «ex» (e в степени x). Значение числа e равно 2,71828…; как и в числе , в нем бесконечное количество десятичных знаков. Это просто число. Буква c означает скорость света, с ней мы уже встречались. Буква k – это постоянная Больцмана. Буква T – это просто температура, а буква h означает постоянную Планка, с которой мы познакомились в главе 4. Если присвоить объекту температуру T, то единственным неизвестным в уравнении остается – длина волны. Так, постепенно присваивая разные значения, от очень малых до очень больших, мы получаем значение I. Это будет функция от длины волны, строго повторяющая показанные кривые. Макс Планк предложил это уравнение в 1900 году, и оно произвело революцию в физике.
Предложив свою постоянную, Планк положил начало квантовой физике; в то же время Макс Планк является и отцом-основателем квантовой механики. Обратите внимание на первый член в скобках: 2hc2/5. Что происходит с энергией по мере увеличения длины волны? Она падает. С ростом член 1/5 стремится к нулю. При больших член hc/kT уменьшается. Математик сказал бы, что ex по мере уменьшения x становится примерно равен 1 + x.Так, при больших член hc/kT уменьшается, а член ehc/kT становится примерно равен 1 + hc/kT, и, если вычесть отсюда 1, член (ehc/kT–1) становится равен hc/kT. Соответственно в пределе, когда становится большим, все выражение приобретает вид I(T) = (2hc2/5)/(hc/kT)= 2ckT/4. Это тождество было известно и до Планка. Оно называлось «Закон Рэлея – Джинса» в честь открывших его лорда Рэлея и сэра Джеймса Джинса. По мере роста интенсивность I начинает падать в строгом соответствии с формулой 1/4.Что происходит, когда мы двигаемся в сторону все более коротких волн? По мере уменьшения 4 1/4 возрастает, в результате чего уравнение рушится (перестает согласовываться с экспериментами). В свое время это явление было названо «ультрафиолетовая катастрофа». Здесь явно была какая-то ошибка. Вильгельм Вин сформулировал закон, объяснявший экспоненциальный спад при малых длинах волн и согласовывавшийся с данными в коротковолновом диапазоне, но не согласовывавшийся в длинноволновом. Мы не имели четкого представления об этих температурных кривых абсолютно черного тела вплоть до 1900 года, когда Макс Планк вывел формулу, согласовывавшуюся с данными и в коротковолновом, и в длинноволновом пределе спектра, а также везде между ними. Формула содержит постоянную h, которая позволяет квантовать энергию так, что любая энергия учитывается в виде дискретных пучков. Если трактовать энергию как дискретные пучки, то по мере перехода ко все более коротким волнам формула Планка начинает возрастать по экспоненте и член 1/5 превращается в ничто. Когда мала, hc/kT возрастает, а число e, возведенное в такую степень (ehc/kT), очень быстро становится очень большим. Оно настолько больше –1, что этот член можно игнорировать, а при ehc/kT в знаменателе ответ получается маленьким. Две эти части уравнения, член 1/5 и член 1/ehc/kT, словно состязаются друг с другом. По мере того как стремится к нулю, 1/ehc/kT стремится к нулю гораздо быстрее, чем успевает расти член 1/5, поэтому и вся кривая стремится к нулю. Без экспоненциального члена вся формула быстро устремилась бы к бесконечности, а длина волны – к нулю, но эксперименты показывают, что на практике это не подтверждается. Феномен кванта потребовался, чтобы понять природу теплового излучения, и уравнение Планка объясняет устройство этих кривых.
Формула Планка позволила все это учесть. Она верно показывает, где будет пик кривой. Исаак Ньютон изобрел математику, позволяющую вычислить пик функции: там, где крутизна кривой стремится к нулю при максимальном значении этой кривой. Ньютоновское дифференциальное исчисление позволяет взять производную функции и найти это место. В таком случае получим очень простой ответ: пик = C/T, где C –
Это красиво. С повышением температуры постоянно уменьшается длина волны, при которой кривая достигает пикового значения. Чтобы в этом убедиться, достаточно всего лишь рассмотреть свойства уравнения пик = C/T. При T в знаменателе имеем, что вдвое более горячее тело даст пик функции при вдвое меньшей длине волны (эту зависимость обнаружил Вильгельм Вин, поэтому она называется «закон Вина»).
Как определить общую энергию на единицу времени на единицу поверхности, соответствующую площади под одной из этих кривых? Мне потребовалось бы просуммировать вклад от всех различных длин волн, то есть всю площадь под конкретной кривой. Для этого можно воспользоваться интегральным исчислением – опять же, спасибо Исааку Ньютону. Если интегрировать функцию Планка по всем длинам волн, то получится еще одно красивое уравнение.
Общая энергия, излучаемая в секунду на единицу площади = T4, где = 25k4/(15c2h3) = 5,67 x 10–8 ватт на квадратный метр, причем T – это температура в кельвинах. Перед нами закон Стефана – Больцмана. Йозеф Стефан и Людвиг Больцман были двумя титанами физики XIX века. К сожалению, Больцман свел счеты с жизнью, когда ему было 62 года. Но сохранился этот закон. Если интегрировать функцию Планка, то получится значение постоянной (греческая буква «сигма»). Это колоссально. Как Стефану и Больцману удалось сформулировать этот закон, если Планк еще не вывел свою формулу? Стефан открыл закон экспериментально, а Больцман сформулировал, исходя из соображений о термодинамике.
Если общая энергия, излучаемая в секунду на единицу площади равна T4, то, если удвоить температуру, поток излучаемой энергии возрастет с коэффициентом 24 = 16.Утроим температуру, и что получится? 34 = 81.Учетверим – и получится 44 = 256.Эта тенденция прослеживается на рис. 5.1, где видно, насколько увеличиваются кривые при возрастании температуры.
Вот как можно запомнить принцип работы этой формулы. Допустим, мы взяли какое-то количество теплового излучения и положили его в коробочку. Теперь будем медленно сжимать коробочку, пока она не станет вдвое меньше. Количество фотонов в коробочке останется тем же, но объем коробочки уменьшится в 8 раз и, соответственно, количество фотонов на кубический сантиметр возрастет в 8 раз. Но при сжатии коробочки длина волны каждого фотона также укорачивается вдвое. В результате тепловое излучение коробочки становится вдвое жарче, так как пиковое значение длины волны уменьшилось вдвое. Удваивается энергия каждого фотона и, соответственно, энергия коробочки. Увеличение энергии каждого фотона происходит за счет той энергии, что затрачивается на сжатие коробочки, эта энергия противодействует давлению излучения, что внутри коробочки. Таким образом, плотность энергии в коробочке будет в 8 x 2 = 16 раз выше, чем ранее, а 16 = 24. Следовательно, энергетическая плотность теплового излучения пропорциональна температуре в четвертой степени, или T4.
Давайте определимся еще с некоторыми терминами. Светимость – это общая энергия, излучаемая звездой в единицу времени. Светимость измеряется в ваттах, точно как у лампочки накаливания. Светимость 100-ваттной лампочки равна 100 ватт. Светимость Солнца равна 3,8 x 1026 ватт. Мощная такая лампочка.
Теперь предложу задачку. Допустим, Солнце обладает такой же светимостью, что и другая звезда, чья поверхностная температура – 2000 К. Какова температура Солнца? В данном примере давайте округлим ее до 6000 К. Температура другой звезды всего 2000 К, то есть она гораздо прохладнее и не может излучать столько же энергии на единицу площади в единицу времени, сколько Солнце, но я заявляю, что светимость у этой звезды точно как у Солнца. Как такое может быть? Беру вторую звезду, вырезаю с нее лоскут площадью 1 см2, с температурой 2000 К, затем вырезаю с Солнца такой же лоскут площадью 1 см2, с температурой 6000 К – втрое жарче. Сколько энергии в единицу времени будет излучать такой лоскут на Солнце по сравнению с лоскутом такой же площади на звезде с температурой 2000 К? В 81 раз больше энергии. Каким же образом вторая звезда может излучать в секунду такую же суммарную энергию, как и Солнце? Если у этих звезд одинаковая светимость, то они должны отличаться чем-то еще, кроме температуры. Дело в том, что вторая звезда, сравнительно холодная, должна иметь гораздо более обширную поверхностную площадь, с которой льется излучение. Фактически ее поверхностная площадь должна быть в 81 раз больше, чем у Солнца. Это должен быть красный гигант, который за счет огромной поверхностной площади восполняет дефицит температуры. Теперь вернемся к нашим уравнениям. Чему равна площадь поверхности сферы? Она равна 4r2, где r – радиус сферы. Возможно, вы изучали это уравнение в средней школе. Дальше начинается самое интересное. Если светимость – это энергия, излучаемая в единицу времени, а энергия, излучаемая в единицу времени на единицу площади, равна T4, то мы получили уравнение, позволяющее вычислить светимость Солнца:
LСолн = TСолн4 x (4rСолн2).
Можно составить схожее уравнение и для другой звезды. Обозначим ее светимость звездочкой, L*. В таком случае уравнение для вычисления светимости этой звезды – L* = T*4 x (4r*2). Теперь у меня есть уравнения для обеих. Более того, я постулировал, что LСолн равна L*. Я привел именно такой пример, чтобы подчеркнуть, что мне даже не требуется знать поверхностную площадь Солнца – в данной задаче речь идет лишь о соотношениях величин. Можно удивительно много узнать о Вселенной, просто присмотревшись к соотношениям.