Борьба со старением, или Не все мы умрем…
Шрифт:
Так устроена основная молекула жизни!
РНК отличается от ДНК незначительно. Во-первых, в качестве связующего звена используется другой тип сахара – не дезоксирибоза, а просто рибоза. Во-вторых, вместо тимина РНК использует другое основание – урацил.
Ковалентная и водородная связи определяют многие свойства основы нашего тела – воды. Ковалентная связь создает асимметрию молекулы воды и создает ее двухполюсную структуру, кратко диполь. То есть отрицательно заряженный атом кислорода в молекуле воды несколько отстоит от положительных ядер атома водорода (как показано на рис. 1.2.2).
Образование диполя – фундаментальное свойство воды. Если воду поместить в электрическое
Рис. 1.2.5. Диполи воды выстраиваются во внешнем электрическом поле так, чтобы его ослабить
На рис. 1.2.5 (слева) показаны диполи воды без внешнего поля, а справа – при наличии поля E0. Диполи воды выстраиваются в направлении, противоположном внешнему полю. В результате оно ослабляется, причем, как показывают измерения, в 81 раз.
Точно так же ослабляются ковалентные и водородные связи в воде. Именно это делает их менее устойчивыми и создает возможности для их разрыва и образования новых связей. Это открывает возможности для различных превращений органических молекул, которые и являются сущностью нашей жизни. Во Вселенной нет больше такой замечательной среды для протекания жизненных процессов, как вода. Так что нам, в который уже раз, исключительно повезло! Воды на Земле оказалось предостаточно для развития жизни.
Рис. 1.2.6. Кластеры водных молекул
Асимметрия обеспечивает образование водородных связей между молекулами воды. Атом водорода, находящийся на положительном полюсе одной молекулы воды, притягивается к атому кислорода, находящимся на отрицательном полюсе другой молекулы воды. Так молекулы воды сцепляются в кластеры (рис. 1.2.6). При охлаждении из этих кластеров образуются кристаллы льда и снежинки. На реально существующем свойстве кластеризации воды основаны спорные гипотезы о «памяти воды» и обоснования действия гомеопатических лекарств [33] .
33
Гомеопатия утверждает, что сила действия гомеопатического средства проявляется при очень большой степени разбавления (потенциирование), даже в том случае, когда в растворе уже не остается молекул лекарственного вещества. При этом объясняют, что целебное действие сохранено, поскольку вода была структурирована лекарством и теперь уже она сама приобрела целебные свойства.
В клетке вода окружает все органические молекулы. Диполи воды создают между ними энергетические барьеры, которые нужно как-то преодолевать. То есть взаимодействию двух молекул препятствуют электростатические силы отталкивания окружающих каждую молекулу диполей воды.
Клетка представляет собой водную среду в пластичной оболочке, в которой находится множество органических молекул. Все молекулы в клетке постоянно движутся с большой скоростью, но на очень маленькие расстояния, сталкиваясь в основном с молекулами окружающей их воды. Это хаотическое тепловое, или броуновское движение (припоминаете?). Каждая молекула, находящаяся в клеточном «коктейле», пребывает в хаотическом подрагивании или трепетании. Если бы диполи воды не отталкивали бы молекулы и не препятствовали их соединению, органические молекулы слились бы между собой, и жизнь, представляющая собой постоянно идущие химические реакции, прекратилась, так и не начавшись.
Диполи воды как бы изолируют белковые и другие органические молекулы и препятствуют спонтанным, то
Работу фермента легче всего представить себе следующим образом. Фермент представляет собой довольно большую белковую молекулу. Одна его часть временно скрепляется с первой органической молекулой (субстрат), которая должна вступить в реакцию, а другая часть – со второй молекулой. Фермент расчищает пространство между реагирующими молекулами от диполей воды, что позволяет им соприкоснуться и соединиться друг с другом в новое устойчивое соединение – продукт реакции. После этого фермент отпускает новое соединение (продукт) в свободное плавание по клетке. Он вновь готов к работе.
Другие ферменты расщепляют субстрат на отдельные продукты, как показано на рис. 1.2.7. В этом случае фермент создает между частями субстрата щель, в которую проникают надежно разъединяющие продукты молекулы воды.
Рис. 1.2.7. Как работает фермент
В клетке одновременно проходят тысячи химических реакций, и каждую из них обслуживает отдельный фермент, не похожий на другие. Без фермента невозможна биохимическая реакция. Каждая реакция может одновременно проходить в разных частях клетки. Поэтому чем больше ферментов, специфических для этой реакции, тем интенсивнее она будет проходить. Следовательно, влияя на количество ферментов, можно регулировать интенсивность реакции. Каждый белок и, значит, каждый фермент вырабатываются определенным геном. Интенсивность выработки белка, как вы уже, надеюсь, помните, соответствует экспрессии гена, которая регулируется эпигенетическими факторами. Отсюда следует, что мозг, подавая команды через специальные сигнальные молекулы-гормоны или через нервную систему, может эпигенетическими факторами воздействовать на экспрессию генов и, таким образом, регулировать интенсивности всех реакций в клетке.
Это главный механизм, регулирующий все химические реакции в клетке.
1.2.2. Как устроена клетка
В конце предыдущей главы мы описали, как живет клетка в клеточном сообществе, которым, по существу, является тело человека. Она получает от других клеток всё необходимое для жизнедеятельности и сама выполняет свойственные ей в этом сообществе функции. Строение каждой клетки должно обеспечивать:
• выполнение определенных для этого типа клетки функций в организме человека, например производство гормонов для клеток эндокринной железы или желудочного сока для клеток желудка;
• индивидуальность этой конкретной клетки путем построения надежной границы между тем, что находится внутри и снаружи клетки (это свойство любого живого организма; в частности роль границы тела человека играют кожа и внутренние поверхности пищеварительных и дыхательных органов, соприкасающиеся с внешней средой);
• размножение клетки путем деления, то есть создание своей копии (при этом, в отличие от человека, клетка создает свою полноразмерную копию, поэтому перед делением ей нужно накопить в себе все необходимые белки, жиры, углеводы и нуклеотиды в двойном размере).
Для выполнения этих основных задач клетка должна содержать:
• оболочку, надежно отделяющую ее содержимое от внешней среды, но позволяющую полезным веществам и управляющим молекулам проникать в клетку и из клетки в межклеточную жидкость;
• хорошо охраняемое хранилище, содержащее информацию о структуре клетки, ее функциях, структуре белков и т. д., и центр управления производством всех необходимых клетке веществ (белков, жиров, нуклеотидов и т. д.);