Борьба со старением, или Не все мы умрем…
Шрифт:
• изолированные части клетки (цеха) для производства и сборки необходимых клетке белков, жиров, нуклеотидов и т. д.;
• систему энергообеспечения клетки, поставляющую энергию для всех потребляющих её производственных процессов;
• инфраструктуру, поддерживающую форму клетки и транспортирующую по клетке вещества;
• систему ремонта частей клетки и вывоза разнообразного мусора.
Как мы видим, перечень необходимых частей клетки примерно совпадает с органами и системами человека или частями крупного города, что вполне закономерно, поскольку сложные системы и организмы устроены похожим образом.
Строение клетки вполне соответствует поставленным задачам. Да иначе и быть не могло. Основные части, их расположение и взаимодействия, в принципе, известны давно. Впервые, в 1665 году, клетку
Как мы уже говорили, клетки имеют очень разные формы и размеры. Каждый из нас не раз держал клетку в руках, очищая и съедая куриное яйцо. Клетки человека, конечно, намного меньше. Их примерный средний размер – 20 тысяч нанометров [34] . Мы все размеры будем измерять в нанометрах (нм) для удобства сравнения. Например, толщина человеческого волоса – 80 тысяч нанометров. Клетки бактерий примерно в 10 раз меньше человеческих, вирусы – где-то 100 нм (это размер вируса гриппа), белки – около 2–5 нм, а нуклеотиды и сахара – 0,5–1 нм. Так что по объему молекула белка меньше клетки в 60 миллиардов раз, и для белков и, тем более, для других более мелких молекул клетка – огромный город. (Человек ростом около 1,7 м примерно во столько же раз меньше крупного города радиусом 17 км, во сколько средний белок меньше клетки).
34
Нанометр – 10– 9 м, одна миллиардная часть метра.
Рис. 1.2.8. Структура клетки
Наша цель – понять, как устроена клетка и как она функционирует, для того чтобы выделить в этих процессах наиболее вероятные факторы старения нашего организма.
Для наглядности приведем одно из известных схематических изображений структуры клетки (рис. 1.2.8).
Клетка отделена от других клеток и межклеточной жидкости оболочкой-мембраной, которая состоит из двух слоев водоотталкивающих липидов (жиров). Она способна пропускать только определённые вещества и только в определенном направлении. Через неё внутрь клетки может медленно просачиваться глюкоза, аминокислоты, жирные кислоты и ионы. Причём скорость просачивания может регулироваться.
Внешняя липидная оболочка клеток покрыта полисахаридами и белками, которые присоединены к липидам. Белки покрывают поверхность мембранной оболочки наподобие мозаики. К ним так же часто прикреплены полисахариды. Часть белков образуют в мембране ходы, через которые могут проникать внутрь клетки или выводиться вовне строго определенные молекулы. Другие белки служат органами осязания клетки – рецепторами. Они могут распознавать подходящие к клетке чужеродные молекулы.
В клетке можно выделить две основные части – ядро и внутриклеточное пространство, или цитоплазму, в которой плавают различные органы клетки – органеллы. Ядро отделено от цитоплазмы двумя ядерными мембранами, которые так же, как и клеточная мембрана, состоят главным образом из жиров-липидов. Все клеточные и внутриклеточные мембраны имеют толщину около 7 нм.
Теперь о главном. Клетка должна постоянно производить белки для восполнения собственных расходуемых или разрушающихся в процессе эксплуатации белков, для производства белков дочерних клеток, образующихся при делении, и белков, которые будут использоваться организмом вне данной клетки. Белок – сложнейшая трехмерная конструкция, состоящая иногда из многих сотен аминокислот, причудливо свернутых и переплетенных. При этом для выполнения предназначенной конкретному белку функции важна не только последовательность аминокислот в белке, но и их взаимное расположение в трехмерной конфигурации. Для производства белка, как и любого изделия такой сложности, необходим проект и инструкция по его сборке.
Общеизвестно,
Сегодня уже почти каждый знает, что код инструкции состоит из четырех букв – T, A, C и G [35] , образующих сцепленные друг с другом пары нуклеотидов T – A, C – G. Полный код содержит примерно 3 млрд пар таких букв (нуклеотидов), которые по их предназначению можно разбить на отдельные группы – гены. Каждый ген – это участок ДНК, который является инструкцией по производству соответствующей ему молекулы РНК (рибонуклеиновая кислота). РНК очень похожа на ДНК, только тимин в ней заменен на близкий по строению и функциям урацил. Принято считать, что РНК возникли в процессе эволюции раньше ДНК и 3–4 миллиарда лет назад мир органических соединений был представлен только молекулами РНК. Говорят даже о мире РНК, который предшествовал началу жизни.
35
Это первые буквы названия нуклеотидов, составляющих ДНК. T – тимин, A – аденин, C – цитозин, G – гуанин.
Однако РНК имеет только одну цепочку. Она может образовывать две связанные цепи как ДНК, но такая молекула не будет достаточно устойчивой. Поэтому для передачи наследственной информации лучше подходит устойчивая и стабильная ДНК. В то же время РНК оказалась незаменимым инструментом для передачи информации в процессе производства белков и регулирования процессов внутри клетки.
Теперь опишем производство белка в клетке по шагам.
1. Упакованный в цепочке ДНК ген, кодирующий определенный белок, распаковывается служебными белками и выводится в рабочую область. В ядре к нему подходит специальный фермент (белок) РНК-полимераза. Она узнает участок гена, называемый промотором, и, связываясь с ним, последовательно производит молекулу РНК, используя ген ДНК как шаблон. В результате получается молекула РНК [36] , в которой та же последовательность букв, что и в гене ДНК, только на месте тимина стоит урацил. Производство м-РНК на основе гена ДНК принято называть транскрипцией [37] . Информация транскрибируется, то есть переписывается из кода ДНК в почти такой же код РНК.
36
Этот тип РНК называют матричными РНК, или м-РНК. В ней содержится и переносится полная информация о гене, на основе которого, как с матрицы, производится белок.
37
Транскрипция – «переписывание», от лат. trans– «через, пере-» и scribo – «черчу, пишу».
Рис. 1.2.9. Синтез белка в рибосоме
2. Построенная таким образом молекула РНК покидает ядро через поры в ядерной мембране и попадает в эндоплазматическую сеть (ЭПС), которая представляет собой сложную систему мельчайших пузырьков, полостей, камер и канальцев. ЭПС занимает от 30 до 50 % объема клетки.
3. На стенках ЭПС располагаются примерно 10 млн рибосом – молекулярных комплексов, производящих белки по инструкции, принесенной РНК. Рибосома состоит из белков, соединенных со специальными РНК [38] . Она состоит из двух частей и по форме напоминает трубку, лежащую на телефоне (см. рис. 1.2.9). Матричная РНК (м-РНК), попавшая в эндоплазматическую сеть, втягивается в ближайшую рибосому между ее двумя частями («трубкой» и «телефоном»), и нуклеотид за нуклеотидом проталкиваются через нее.
38
Этот тип РНК называют рибосомными РНК.