Борьба за скорость
Шрифт:
Если этого не сделать, электроны будут беспорядочно носиться около электродов, как мошкара вокруг зажженной лампы. Лишь небольшая часть их доберется до цели — анода. Ток в цепи будет мал.
И вот в этом рое электронов появляется сетка.
Она управляет движением электронов, как светофор уличным движением.
Красный свет! Стоп! На сетке — отрицательный заряд. Она не пускает электроны к аноду.
Зеленый свет! На сетке — положительный заряд. Она притягивает теперь электроны. Электронный рой, притягиваемый и ускоряемый сеткой, направляется к аноду.
В этом секрет электронной лампы-усилителя. С несколькими лампами можно довести усиление тока до миллиарда, до сотни миллиардов раз. И еле-еле слышимый шепот, слабые, незаметные сигналы с их помощью говорят полным голосом. Мы «слышим голос» руды под землей, которая действует на магнитный прибор пролетающего над месторождением самолета, узнаем свойства металла, которые обнаруживают себя при пропускании по нему тока, слышим, как растет трава, ловим малейшие изменения, которые говорят нам о том, что нас интересует, — температуре, давлении, скорости, влажности и о многом другом.
Сейчас созданы самые разнообразные конструкции электронных ламп. Их ежегодное производство достигает нескольких сот миллионов штук. Как и электронно-лучевая трубка, эта лампа — самый распространенный электронный прибор современности.
Электронную лампу-усилитель встретим в радиотехнике, где нужно усилить слабые сигналы, где нужно получить такие частые изменения силы тока в цепи, какие недоступны никакому другому электрическому прибору. Какой переключатель смог бы делать миллионы переключений в секунду! А электронная лампа легко делает это, потому что управлять ее током можно с огромной скоростью, создавая колебания тока до миллиардов раз в секунду.
Электронный счетчик может сделать до 100 тысяч отсчетов в секунду. Никакой другой не угонится за ним!
Схема радиоприема.
Радиотехника овладела сейчас сверхбыстрыми колебаниями. Сверхвысокочастотные радиолампы создают колебания частотой в десятки миллиардов в секунду! Эта новая электронная техника стала основой радиолокации, телевидения, высококачественной радиосвязи.
Электронные лампы, создающие быстрые колебания, работают не только в радиотехнике.
Они применяются для нагрева токами высокой частоты металла, пластмасс, древесины. Высокочастотный нагрев завоевал прочное место в нашей промышленности.
Электронные лампы-усилители и генераторы высокочастотных колебаний необходимы для автоматического контроля и регулирования производственных процессов, для сверхбыстрого испытания металлов, для управления станками-автоматами, электросваркой, плавного переключения скорости электромоторов, для мгновенного решения сложнейших математических задач в «машинной математике».
Теперь, когда мы познакомились
Ответ здесь наполовину известен. Техника умеет создавать «электрическую картину» многих явлений, преобразуя изменения разных величин в разные электрические токи.
Она может создавать и «электрические модели» различных процессов. На языке математики многие непохожие друг на друга явления описываются совершенно одинаково.
«Казалось бы, что может быть общего между расчетом движения небесных светил под действием притяжения к Солнцу и между собою и качкой корабля на волнах? Между тем, если написать только формулу и уравнения без слов, то нельзя отличить какой из этих вопросов решается: уравнения одни и те же», — писал академик Крылов.
В этом проявляется единство природы. И этим пользуется техника.
Вместо «настоящего» явления, скажем, действия аэродинамических сил на летящий самолет, составляется электрическая цепь, где токи, напряжения и другие величины, с какими имеет дело электротехника, заменят определенные силы, скорости, нагрузки. Для того и другого формулы одинаковы.
А для математики безразлично, что именно мы решаем. Формулы-то ведь одни и те же. Поэтому, меняя электрические величины, тем самым по их изменению можно судить о других, их «заместителях», о том, что делается с самолетом, когда меняются условия полета — силы, скорости, нагрузки.
Таких примеров можно было бы привести множество, суть же одна: «электрическая модель» точно показывает явление, позволяет узнавать, как оно произойдет.
Но так как дело свелось к электричеству, то здесь без электронных ламп не обойтись! Они управляют токами в электрических моделях, затрачивая на это очень малую мощность.
В счетно-решающих устройствах работают тысячи ламп.
На большом самолете их несколько сотен.
Радиолампы поднимаются на ракетах в стратосферу, обеспечивая управление и связь с землей. Одновременно передается около трех десятков разных сведений, которые сообщают автоматические приборы: и о воздухе, и о солнечных и космических лучах, и о положении ракеты, и о работе ее механизмов.
Надо отметить, что создать электронные лампы для таких летающих лабораторий было нелегко.
Эти лампы должны быть прочными. Ракете приходится испытывать в полете большие перегрузки, толчки и колебания.
Они должны быть в то же время маленькими и легкими. В ракете мало места! И вдобавок нужно обеспечить герметическую защиту всех деталей рации, — ракета летит туда, где воздуха почти нет. Лампы же для самолетной аппаратуры должны быть еще и долговечными.
Радиотехники создали миниатюрные лампы и электронные приборы, которые выдерживают всё, что достается при тяжелой их «летной» службе.
Есть сверхминиатюрная лампа чуть побольше рисового зерна! Между концами электродов такой лампы — расстояние в половину микрона, а сами электроды диаметром всего в сотую долю микрона.