Чтение онлайн

на главную - закладки

Жанры

Человеческое познание его сферы и границы
Шрифт:

Это есть число способов, которыми может быть получено х белых шаров. Чтобы получить вероятность числа х белых шаров, мы должны разделить это число на сумму чисел способов получения 0 белых шаров, или 1, или 2, или 3, или … или n. Легко показать, что сумма равна 2». Следовательно, шанс получить ровно х белых шаров достигается в результате деления вышеупомянутого числа на 2». Назовем его «p (A, r) ".

Этот шанс имеет максимум, когда х = 1/2n, если n четное число, или когда х = 1/2n +- 1/2, если n есть нечетное число. Его значение, когда х или n-х мало, очень мало, если n — большое. С чисто математической точки зрения эти два очень различных результата одинаково правильны. Но когда мы подходим к измерению степеней правдоподобия, между ними обнаруживается большая разница Допустим, что у нас независимо от цвета есть какой-либо способ, с помощью которого мы можем различать шары; например, пусть они последовательно вынимаются из сумки и назовем первый вынутый d1, второй вынутый d2; и так далее Обозначим через «a " «белые», через «b» «черные» и поставим 'fa» вместо «белый цвет есть цвет a»,

«fb» вместо 'черный цвет есть цвет а1». Данные говорят, что верно или fa или fb, но не оба. Это симметрично, и, следовательно, на основании свидетельства данных fa и fb имеют одинаковое правдоподобие, то есть «d1 — белый» и «d1 — черный» имеют одинаковое правдоподобие. Это же самое рассуждение применимо к d2, d3, …, dn. Таким образом, для каждого шара степени правдоподобия белого и черного равны. И, следовательно, как показывает простое вычисление, степень правдоподобия х белых шаров есть p (n, r), где предполагается, что х лежит между 0 и n, включая и их самих.

Следует отметить, что в измерении степеней правдоподобия мы предполагаем, что данные не только верны, но и исчерпывающи по отношению к нашему знанию, то есть мы предполагаем, что мы не знаем ничего относящегося к делу, кроме того, что упоминается в данных. Следовательно, для данного человека в данное время существует только одно правильное значение для степени правдоподобия данного предложения, тогда как в математической теории многие значения одинаково правильны в отношении многих различных данных, которые могут быть чисто гипотетическими.

В применении результатов математического исчисления вероятности к степеням правдоподобия мы должны тщательно выполнять два условия. Во-первых, случаи, которые образуют основу математического перечисления, все должны быть равно правдоподобны по свидетельству в их пользу; во-вторых, свидетельство должно включать все наше относящееся к нему знание. Следует сказать несколько слов в отношении первого из этих условий.

Каждое математическое исчисление вероятности начинает с какого-либо основоположного класса, вроде определенного числа бросаний монеты, определенного числа бросаний игральных костей, колоды карт, совокупности шаров в сумке. Каждый член этого основоположного класса считается за единицу. Из него вывели другие логически производные классы, например класс n последовательностей 100 бросаний монеты. Из этих n последовательностей мы можем выделить подкласс бросаний, состоящий из 50 выпадений монеты лицевой стороной и 50 — упавших оборотной стороной. Или, взяв колоду карт, мы можем образовать класс возможных «игроков», то есть наборов из 13 карт, и далее исследовать, какие из них содержат 11 карт одной масти. Дело в том, что частоты исчисляются, всегда применяются к классам, имеющим какую-то структуру, определяемую логически по отношению к основоположному классу, тогда как основоположный класс в целях разрешения проблемы рассматривается как состоящий из членов, не имеющих логической структуры, то есть их логическая структура не относится к делу.

Пока мы ограничиваемся исчислением частоты выпадений, то есть математической теорией вероятностей, мы можем взять любой класс в качестве основоположного класса и исчислять частоты по отношению к нему. При этом нет необходимости делать предположение, что все члены класса равно вероятны; все, что нам нужно сказать, это то, что для данной цели каждый член класса должен рассматриваться как единица. Но когда мы хотим определить степени правдоподобия, необходимо, чтобы наш основной класс состоял из предложений, которые все одинаково правдоподобны в отношении свидетельства в их пользу. «Неделимость» Кейнса имеет целью обеспечить это. Я предпочел бы сказать, что члены основоположного класса должны иметь «относительную простоту», то есть они не должны иметь структуры, определяемой в терминах исходных данных. Возьмем, например, белые и черные шары в сумке. Каждый шар в действительности имеет невероятно сложную структуру, поскольку он состоит из миллиардов молекул: но это не имеет никакого отношения к нашей проблеме. С другой стороны, совокупность m шаров, выбранных из основоположного класса n шаров, имеет логическую структуру по отношению к основоположному классу. Если каждый член основоположного класса имеет название, то каждый подкласс, состоящий из m членов, может быть определен. Все исчисления вероятности имеют дело с классами, которые могут быть определены в терминах основоположного класса. Но сам основоположный класс должен состоять из членов, которые не могут быть логически определены в терминах исходных данных. Я думаю, что когда это условие выполняется, то принцип индифферентности всегда удовлетворяется.

В этом пункте, однако, нужна осторожность. Имеются два пути, когда предложение «а есть а» может стать вероятным или (1) потому, что достоверно, что а принадлежит к классу, большинство членов которого суть а, или (2) потому, что вероятно, что а принадлежит к классу, все члены которого суть а. Например, мы можем сказать: «Г-н А, вероятно, смертен», если мы уверены, что большинство людей смертны, или если мы имеем основание считать вероятным, что все люди смертны. Когда мы бросаем игральные кости, мы можем сказать: «Вероятно, не выпадет двойной шестерки», — потому что мы знаем, что большинство бросаний не дает двойной шестерки. С другой стороны, предположим, что я имею свидетельство, дающее основание для предположения, но не доказывающее, что при определенной болезни всегда бывает определенная бацилла; я могу тогда сказать, что когда имеется эта болезнь, то, вероятно, есть и эта бацилла. В каждом из двух вышеприведенных случаев мы имеем что-то вроде силлогизма. В первом случае:

Большинство А есть В

Это есть А

Следовательно, это, вероятно, есть

В.

Во втором случае:

Вероятно, все А суть В

Это есть А

Следовательно, это, вероятно, есть В.

Второй случай, однако, труднее свести к частоте. Исследуем, возможно ли это.

В некоторых случаях это явно возможно. Например, большинство слов английского языка не содержит буквы z. Следовательно, если возьмем наудачу какое-либо слово, то вероятно, что ни одна из его букв не будет г. Таким образом, если А — класс букв в данном слове, а В — класс букв, кроме буквы z, то мы получим случай нашего второго псевдосиллогизма. Слово, конечно, должно быть определено каким-либо способом, который пока оставляет нас в неведении относительно того, какое это слово; например, слово должно быть определено как 8000-е слово в «Гамлете» или как третье слово на 248-й странице «Concise Oxford Dictionary. При том, что вы, допустим, в настоящее время не знаете, что представляют собой эти слова, вы поступите разумно, если будете утверждать, что они не содержат буквы z.

Во всех случаях нашего второго псевдосиллогизма ясно, что то, что я назвал «основоположным классом», дается как класс классов, и, следовательно, его логическая структура имеет большое значение. Обобщим приведенный выше пример: пусть К будет классом классов, таким, что большинство его членов полностью содержится в некотором классе бета; тогда из предложений «x есть альфа» и «альфа есть k» мы можем заключить, что «х, вероятно, есть бета». (В приведенном выше примере k есть класс слов, альфа — класс букв в определенном слове и бета — алфавит без буквы z). Странно то, что, обозначая через сумма членов k» класс членов членов k, наши посылки оказываются недостаточными для того, чтобы доказать, что какой-либо член суммы k, вероятно, есть член класса p. Например, пусть k состоит из трех слов Strength, Quail, Muck — вместе со всеми словами, не содержащими ни одной буквы, содержащейся в любом из этих трех слов. Тогда сумма k состоит из всех букв алфавита, возможно, за исключением z. Должно ли z включаться в алфавит, это зависит от того, считается ли «Zoo» (сокращенное «зоопарк») словом. Но предложение «k есть а и а есть k» делает вероятным, что х не является одной из букв, содержащихся в вышеприведенных трех словах, тогда как предложение «х есть член суммы х» не делает это вероятным. Это иллюстрирует те сложности, которые возникают, когда основоположный класс имеет относящуюся к вероятностям структуру. Но в случаях, вроде вышеприведенных, все же можно измерить правдоподобие с помощью частоты, хотя и менее простым способом.

Имеется, однако, другой и более важный класс случаев, который мы не можем адекватно обсудить иначе, как только в связи с индукцией. Это случаи, где мы имеем индуктивное свидетельство, делающее вероятным, что все А суть В, и где мы выводим, что отдельное А, вероятно, есть В; например, вероятно, все люди смертны (не смешивать с предложением «все люди, вероятно, смертны»), следовательно, Сократ, вероятно, смертен. Это псевдосиллогизм нашего второго вида. Но если слово «вероятно» в предложении «вероятно, все люди смертны» и может быть сведено к частоте, то, конечно, совсем не просто. Я поэтому оставляю обсуждение этого класса случаев до более поздней стадии исследования.

Имеются, как мы увидим, различные примеры степеней правдоподобия, не выводимые из частот. К обсуждению этих случаев я и перехожу.

В. Правдоподобие данных

В этом разделе я намерен защищать неортодоксальное мнение, а именно то, что данное может быть недостоверным. До сего времени было два взгляда: во-первых, что при надлежащей разработке знания мы начинаем с посылок, которые достоверны сами по себе и могут быть определены как «данные»; во-вторых, что, поскольку никакое знание не является достоверным, постольку нет никаких данных, а дело обстоит таким образом, что наши рациональные верования образуют замкнутую систему, в которой каждая часть поддерживает каждую другую часть. Первый взгляд является традиционным, унаследованным от греков и сохраняющимся в геометрии Евклида и в теологии; второй является взглядом, впервые защищавшимся, если я не ошибаюсь, Гегелем, но с большим успехом защищавшимся в наши дни Джоном Дьюи. Взгляд, который я собираюсь выдвинуть, является компромиссным, но несколько больше склоняющимся к традиционной теории, чем к теории, которую защищали Гегель и Дьюи.

Я определяю «данное» как предложение, которое само по себе имеет некоторую степень разумного правдоподобия, независимо от какого-либо доказательства, полученного из других предложений. Ясно, что заключение доказательства не может получить из доказательства более высокую степень правдоподобия, чем та, которой обладают посылки; следовательно, если существует такая вещь, как рациональная вера, то должны быть рациональные верования, не полностью, основанные на доказательстве. Из этого не следует, что имеются верования, никаким своим правдоподобием не обязанные доказательству, так как предложение может обладать присущим ему правдоподобием и быть также заключением из других предложений, обладающих присущим им правдоподобием. Но из этого не следует, что каждое предложение, рационально правдоподобное в какой бы то ни было степени, должно быть таким или (а) исключительно само по себе, или (б) исключительно как заключение из посылок, рационально правдоподобных сами по себе, или (в) потому, что оно имеет некоторую степень правдоподобия само по себе, а также вытекает с помощью доказательного или вероятного вывода из посылок, которые имеют некоторую степень правдоподобия сами по себе. Если все предложения, имеющие любую степень правдоподобия, сами по себе являются достоверными, то случай (в) не имеет значения, поскольку никакое доказательство не может сделать такие предложения более достоверными. Но с той точки зрения, которую защищаю я, случай (в) имеет наибольшее значение.

Поделиться:
Популярные книги

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

Неудержимый. Книга IV

Боярский Андрей
4. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IV

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Безродный

Коган Мстислав Константинович
1. Игра не для слабых
Фантастика:
боевая фантастика
альтернативная история
6.67
рейтинг книги
Безродный