Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла
Шрифт:
Почему так получилось? С. Вайнберг называет три причины. Первая — это то, что теория горячей Вселенной создавалась Гамовым и его сотрудниками для объяснения распространенности в природе всех химических элементов их синтезом в самом начале расширения Вселенной. Это оказалось неверным. Как мы уже говорили -тяжелые элементы синтезированы в звездах. Только самые легкие элементы ведут свое происхождение с первых мгновений расширения. Были в первых вариантах теории и другие некорректности. Потом все это было исправлено, но в конце сороковых и в пятидесятые годы неточности подрывали доверие к теории в целом.
Вторая причина — плохая связь между теоретиками и экспериментаторами. Первые не представляли, может ли реликтовое излучение быть обнаружено с помощью имеющихся наблюдательных средств, вторые — не слышали о том, что такое излучение следует искать.
Наконец,
Еще одну причину, на наш взгляд самую важную, указывает А. Пензиас в своей лекции, прочитанной при вручении Нобелевской премии. Дело в том, что в первых работах Гамова и его сотрудников, и в последующих работах говорилось о реликтовом излучении, но не было указано, что его можно хотя бы в принципе обнаружить. Более того, Гамов и его коллеги, по-видимому, думали, что это сделать нельзя в принципе! Пензиас говорил: «Что же касается обнаружения реликтового излучения, то, по-видимому, они считали, что в первую очередь это излучение проявит себя как увеличение плотности энергии... Этот вклад в приходящий на Землю общий поток энергии должен быть замаскирован космическими лучами и суммарным оптическим излучением звезд. Обе эти составляющие имеют сравнимые плотности энергии. Мнение о том, что действия трех составляющих с приблизительно равными энергиями нельзя разделить, можно найти в письме Гамова, направленном им Альферу в 1948 г. (не опубликовано; любезно предоставлено одному из авторов (И. Н.) Р. Альфером): «Температура космического пространства, равная 5 К, объясняется современным излучением звезд (С-циклы). Единственно, что мы можем сказать,—это, что оставшаяся от исходного тепла Вселенной температура не выше 5 К». Они, по-видимому, не осознавали того, что своеобразные спектральные характеристики реликтового излучения должны выделять его среди других эффектов.
В начале шестидесятых годов А. Г. Дорошкевич и один из авторов книги (И. Н.) опубликовали работу, в которой показали, что несмотря на то, что общее количество энергии в реликтовом излучении сравнимо с энергией света от галактик (с учетом их эволюции и расширения Вселенной), но реликтовое излучение сосредоточено в области сантиметровых и миллиметровых радиоволн, где мало излучают как галактики, так и обычные радиоисточники. Поэтому его и можно наблюдать!
Вот, что говорит А. Пензиас в своей нобелевской лекции: «Первое опубликованное признание реликтового излучения в качестве обнаружимого явления в радиодиапазоне появилось весной 1964 г. в краткой статье А.Г. Дорошкевича и И.Д. Новикова, озаглавленной «Средняя плотность излучения в Метагалактике и некоторые вопросы релятивистской космологии». Хотя английский перевод появился в том же году, но несколько позже, в широко известном журнале «Советская физика — Доклады», статья, по-видимому, не привлекла к себе внимания других специалистов в этой области. В этой замечательной статье не только выведен спектр реликтового излучения как чернотельного волнового явления, но также отчетливо сконцентрировано внимание на двадцатифутовом рупорном рефлекторе лаборатории «Белл» в Кроуфорд Хилл, как на наиболее подходящем инструменте для его обнаружения!»
Эта статья осталась незамеченной ни теоретиками, ни наблюдателями до открытия реликтового излучения, она не привела к целенаправленным его поискам.
Интересно, что реликтовое излучение могло быть открыто еще в 1941 г.! В это время канадский астроном Э. Мак-Келлар анализировал линии поглощения, вызываемые в спектре звезды ζ Змееносца межзвездными молекулами циана. Он пришел к выводу, что эти линии в видимой области спектра могут возникать только при поглощении света вращающимися молекулами циана. Причем вращение молекул должно возбуждаться излучением с температурой около 2,3 К. Ни сам Мак-Келлар, ни кто другой, конечно, не подумали тогда о возможности того, что возбуждение вращательных уровней молекул вызывается реликтовым излучением. Да, и сама теория горячей Вселенной тогда еще не была создана!
Только после открытия реликтового излучения начиная с 1966 г. были опубликованы работы И. С. Шкловского, Дж. Филда, Дж. Хитчкока, П. Тадеуша и Дж. Вольфа, в которых показано, что возбуждение вращения межзвездных молекул циана, наблюдавшееся в спектре ζ Змееносца и других звезд, вызвано реликтовым излучением. Таким образом, еще в 1941 г. было обнаружено, хоть и косвенное проявление реликтового излучения.
Но и это еще далеко не конец истории.
Вернемся к проблеме технической возможности открытия реликтового излучения. Возникает вопрос: когда техника уже позволяла это сделать? С. Вайнберг пишет: «Трудно ответить точно, но мои коллеги-экспериментаторы говорят мне, что наблюдения могли быть проведены задолго до 1965 г., возможно, в середине пятидесятых,. а может быть даже и в середине сороковых годов». Так ли это?
В середине пятидесятых годов молодой ученый Т. А. Шмаонов под руководством известных советских радиоастрономов С. Э. Хайкина и Н. Л. Кайдановского провел измерения радиоизлучения из космоса на длине волны 32 см. Эти измерения были выполнены с помощью рупорной антенны подобной той, которая была использована много лет спустя Пензиасом и Вилсоном. Шмаонов со всей тщательностью изучил возможные помехи. Конечно, в его распоряжении тогда не было еще столь чувствительных приемников, которые были потом у американцев. Результаты измерения Шмаонова были опубликованы в 1957 г. в его кандидатской диссертации и в советском журнале «Приборы и техника эксперимента». Вывод из этих измерений был таков: «Оказалось, что абсолютная величина эффективной температуры радиоизлучения фона... равна 4 ± 3 К». Шмаонов отмечал независимость интенсивности излучения от направления на небе и от времени. Хотя ошибки измерений Шмаонова и велики и говорить о какой-либо надежности цифры 4 не приходится, мы понимаем теперь, что он измерял именно реликтовое излучение. К сожалению, ни сам Шмаонов, ни его руководители, ни другие радиоастрономы ничего не знали о возможности существования реликтового излучения и не придали должного значения этим измерениям.
Таково сложное переплетение событий, завершившееся открытием горячей Вселенной Пензиасом и Вилсоном в 1965 г. Установление факта сверхвысокой температуры в начале расширения Вселенной явилось отправной точкой важнейших исследований, ведущих к, раскрытию тайн не только астрофизических, но и тайн строения материи. В развитие различных аспектов современной космологии выдающийся вклад внесли научные школы, созданные С. Вайнбергом, В. Л. Гинзбургом, Я. Б. Зельдовичем, А. Л. Зельмановым, М. А. Марковым, И. М. Халатниковым, С. Хокингом и другими.
О новейших открытиях в этой области говорится, в заключительной главе книги.
Взрыв
Открытие расширяющейся Вселенной Хабблом поставило перед естествознанием вопрос огромной мировоззренческой значимости: как Вселенная взорвалась?
Теория Фридмана описывает, как под действием сил тяготения происходит это расширение. Галактики удаляются друг от друга, двигаясь по инерции, а силы взаимного тяготения постепенно тормозят их движение и замедляют расширение Вселенной.
Но теория не отвечает на вопрос, почему расширение началось. Откуда в веществе, из которого потом образовались галактики, взялись начальные скорости расширения?
Обнаружение реликтового излучения показало, что в самом начале Вселенная была горячей, давление вещества, которое тогда распределялось в пространстве почти однородно, было огромным.
На первый взгляд большое давление крайне важно. Вспомним картину взрыва какого-либо заряда, когда в малом объеме выделяется энергия. Это может быть, например, химическая энергия или ядерная. Вещество заряда сильно нагревается и испаряется. Давление нагретых газов вызывает его стремительное расширение. Когда мы обращаемся к началу расширения Вселенной, невольно перед глазами предстает только что описанная картина. Не являются ли большие температура и давление причиной начала расширения? Нет, такое заключение неправильно. Между двумя описанными явлениями имеется существенное различие. При взрыве заряда есть перепад давлений — огромное давление внутри горячих газов и сравнительно малое атмосферное давление снаружи (если взрыв происходит в воздухе). Этот перепад и создает силу, расшвыривающую вещество. Именно перепад давлений создает силу, а не само высокое давление. Ведь если бы снаружи взрывающихся газов давление было такое же, что и внутри, то, очевидно, никакого разлета вещества не было бы. Кроме того, плотность расширяющегося горячего газа при взрыве неоднородна: максимальна в центре и спадает к краям. В ходе разлета перепад давлений, связанный с перепадом плотности и температуры, создает силу, подталкивающую разлетающийся газ.