Чтение онлайн

на главную

Жанры

Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:

Тщательный расчет, проведенный на основании физических законов, помог бы мне узнать, происходит ли все это в действительности.

6.4. (а) Газ, падающий на нейтронную звезду, замедляется давлением рентгеновского излучения, (б) Пытающаяся упасть в гравитационном поле Земли жидкая ртуть удерживается лежащей ниже водой; в результате проявляется неустойчивость Рэлея — Тейлора, (в) Может ли возникнуть неустойчивость Рэлея-Тейлора и для падающего газа, сдерживаемого рентгеновским излучением нейтронной звезды?

Однако подобный расчет был бы очень сложен и отнял бы много

времени, поэтому вместо того чтобы браться за него, я однажды решил поговорить об этом с Зельдовичем, когда мы обсуждали различные вопросы физики на его квартире в Москве, в 1969 г.

Я задал вопрос, Зельдович выглядел немного смущенным, но его ответ был уверенным: «Нет, Кип, это не происходит. В рентгеновских лучах нет языков. Поток газа стабилен». «Откуда вы знаете, Яков Борисович?» — спросил его я. Удивительно, но ответа я добиться не смог. Казалось ясным, что Зельдович (или кто-то еще) проделал детальный расчет или эксперимент, показывающий, что рентгеновское излучение может оказывать давление на газ без образования языков Рэлея — Тейлора, разрушающих это давление. Но Зельдович не мог мне указать на такой расчет или эксперимент, описанный в опубликованной работе, не мог он мне описать и физику происходящего. Как это было для него нехарактерно!

Несколькими месяцами позже я путешествовал с Колгейтом в горах Калифорнии. (Колгейт — один из лучших экспертов в Америке по течению жидкости и излучению, был глубоко вовлечен в американский проект супербомбы на его последнем этапе и был одним из тех трех ливерморских физиков, которые моделировали схлопывание звезд на компьютере.) Когда мы там путешествовали, я поставил перед Колгейтом тот же самый вопрос, который раньше задавал Зельдовичу, и мне был дан тот же самый ответ: поток устойчив; газ не может обойти силы давления рентгеновского излучения образованием языков. «Откуда ты знаешь, Стирлинг?» — спросил я. «Это было показано», — ответил он. «Где я могу найти этот расчет или результаты эксперимента?» — спрашиваю я. «Не знаю»… «Это очень странно, — заявил я Стирлингу, — Зельдович сказал мне в точности то же самое — поток стабилен. Но он, как и ты, не представил мне никаких доказательств». «О! Это очаровательно. Значит, Зельдович действительно знал», — ответил Стирлинг.

И тогда я все понял. Я не хотел знать, но вывод напрашивался сам собой. Идея Теллера — Улама, судя по всему, состояла в использовании рентгеновского излучения, испущенного в первую микросекунду начала распада [атомной бомбы] для того, чтобы помочь сжать и поджечь термоядерное топливо супербомбы (рис. 6.5). То, что это действительно было частью идеи Теллера — Улама, было подтверждено в 1980-х несколькими открытыми публикациями в Америке, иначе я бы об этом здесь не упоминал.

Что заставило Уилера превратиться из скептика по отношению к черным дырам в их сторонника и защитника? Компьютерная модель схлопывающихся звезд стала лишь окончательным подтверждением этого превращения. Гораздо более важным было разрушение ментального барьера. Этот ментальный барьер был распространен в среде физиков-теоретиков с 1920 по 1950-е годы. Частично на него повлияла та самая сингулярность Шварцшильда, перенесенная затем на черные дыры. Частично повлиял и загадочный, кажущийся парадоксальным вывод из упрощенных расчетов Оппенгеймера и Снайдера, состоящий в том, что схлопывающаяся звезда оказывается навсегда замороженной на критической окружности («сингулярность Шварцшильда») с точки зрения покоящегося внешнего наблюдателя, но быстро схлопывается, пройдя через точку замораживания и далее, — при наблюдении с поверхности звезды.

В Москве Ландау и его коллеги, хотя и верили в расчеты Оппенгеймера и Снайдера, столкнулись с серьезными проблемами, пытаясь примирить эти две системы отсчета. «Трудно смириться с тем, насколько тяжело человеческому уму понять, как эти две точки зрения могут быть одновременно правильными», — рассказывал мне несколько лет спустя Евгений Лифшиц — ближайший друг Ландау.

В один из дней 1958 г., года, в котором Уилер атаковал выводы Оппенгеймера и Снайдера, в Москву пришел выпуск Physical Review со статьей Дэвида Финкельштейна — неизвестного постдока из малоизвестного американского университета — Стивенсовского института технологии в Хобокене (Нью-Джерси). Ландау и Лифшиц прочли статью. Это было как откровение. Неожиданно все стало ясно [79] .

79

Открытие Финкельштейна в действительности было сделано еще раньше, в другой связи, другими физиками, включая Эддингтона, но они не поняли его важности, и все было быстро забыто.

6.5. Схематический рисунок, показывающий один из аспектов идеи конструкции водородной бомбы Теллера — Улама/Сахарова — Зельдовича: ядерный взрыв (атомная бомба как запал) порождает интенсивное рентгеновское излучение, которое каким-либо образом фокусируется на термоядерном топливе (дейте-риде лития, LiD). Рентгеновское излучение предположительно должно нагреть топливо и помочь сжимать его в течение времени, достаточного для начала реакции теормоядерного синтеза. Технология фокусировки рентгеновских лучей и другие практические проблемы настолько труднопреодолимы, что знание этой доли «секрета» Теллера — Улама составляет бесконечно малый отрезок пути к созданию действующей супербомбы

В том же году Финкельштейн посетил Англию и прочел лекции в Королевском колледже в Лондоне. Роджер Пенроуз (позже он таким же образом изменит наше понимание того, что происходит внутри черной дыры) поездом приехал в Лондон, чтобы послушать лекцию Финкельштейна, и восторженный вернулся в Кембридж.

Уилера в Принстоне идея Финкельштейна сначала заинтриговала, но полностью он ее не принял. Со временем, но лишь постепенно, в ходе исследований через несколько лет он с ней согласится. Уилер все воспринимал медленнее, чем Ландау или Пенроуз и, как мне кажется, потому, что заглядывал глубже. Он был зациклен на предположении о том, что квантовая гравитация может вынуждать нуклоны (нейтроны и протоны) внутри схлопывающейся звезды превращаться в излучение и предотвращать таким образом схлопывание. Казалось, что это представление невозможно совместить с идеей Финкельштейна. Тем не менее, в определенном глубоком смысле и предположение Уилера, и идея Финкельштейна были верны.

* * *

Так в чем же состояла идея Финкельштейна? Финкельштейн довольно случайно открыл укладывающуюся всего в две строчки математических преобразований новую систему отсчета, в которой можно описывать геометрию пространства-времени Шварцшильда. Мотивы исследования у Финкельштейна были другие, и он не провел связи между своей новой системой отсчета и схлопыванием звезд. Однако для других исследователей выводы его новой системы отсчета были ясны: она открыла им совершенно новую перспективу на схлопывающиеся звезды.

Геометрия пространства-времени вне сжимающейся звезды при этом совпадает с геометрией Шварцшильда и, таким образом, схлопывание звезды может быть описано с использованием новой системы отсчета Финкельштейна. Его система существенно отличалась от тех, с которыми мы ранее встречались (главы 1 и 2). Большинство из них (воображаемые лаборатории) были малы, и все составляющие каждой системы отсчета (верх, низ, стороны, середина) покоились друг относительно друга. Напротив, система отсчета Финкельштейна была настолько велика, что одновременно включала области пространства-времени далеко от звезды, области вблизи нее, и все промежуточные области. Еще важнее то, что различные части этой системы отсчета находятся в движении друг относительно друга. Части, расположенные далеко от звезды остаются статичными, т. е. не сжимаются, тогда как части вблизи звезды падают внутрь, вместе с ее поверхностью. Соответственно, система отсчета Финкельштейна могла быть использована для одновременного описания схлопывания звезды, как с точки зрения удаленного покоящегося наблюдателя, так и с точки зрения наблюдателей, падающих внутрь вместе со схлопывающейся звездой. Получающееся описание прекрасно примиряло замораживание схлопывания для удаленного наблюдателя и продолжающееся движение при наблюдении с поверхности звезды.

В 1962 г. два члена принстонской исследовательской группы Уилера — Дэвид Бекедорф и Чарльз Мизнер — построили последовательность вложенных диаграмм с целью проиллюстрировать это согласие. А в 1967 г. для статьи в Scientific American я преобразовал их вложенные диаграммы в следующую причудливую аналогию.

Дэвид Финкельштейн в 1958 г. [Фото Герберта С. Зонненфельда, предоставлено Дэвидом Финкельштейном]

Поделиться:
Популярные книги

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Совок 4

Агарев Вадим
4. Совок
Фантастика:
попаданцы
альтернативная история
6.29
рейтинг книги
Совок 4

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Я князь. Книга XVIII

Дрейк Сириус
18. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я князь. Книга XVIII

Жандарм 5

Семин Никита
5. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 5

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Аномальный наследник. Том 1 и Том 2

Тарс Элиан
1. Аномальный наследник
Фантастика:
боевая фантастика
альтернативная история
8.50
рейтинг книги
Аномальный наследник. Том 1 и Том 2