Четыре жизни академика Берга
Шрифт:
Составляя программы, способные видоизменяться в процессе работы, ученые постепенно добились возможности применения управляющих машин даже в тех случаях, когда регулируемый процесс еще не изучен математически и составить исчерпывающую программу действий машины невозможно.
В программе машины оказалось даже возможным предусмотреть оценку будущего поведения управляемого объекта. Для этого машина должна просчитать несколько вариантов его поведения при различных возможных изменениях внутри системы и во внешней среде. Получив различные результаты и оценив их с точки зрения заранее заданного критерия (например, по минимуму расхода горючего или по качеству продукции), управляющая машина выберет наилучший вариант. Такая машина как бы приспосабливается к изменениям условий, к управляемому объекту. Она запоминает лучший
Создавая программы, предусматривающие самоорганизацию, приспособление машин, кибернетики тем самым расширяют возможности математических электронных машин за рамки формальной логики, дают возможность машине самой найти тот путь действия, который человек не может ей конкретно указать.
МОГУЩЕСТВО «ДА» И «НЕТ»
Эта удивительная особенность кибернетических машин совершенно перевернула взгляд людей на возможности техники, открыла многочисленные новые области приложения кибернетики.
На «думающие» машины обратили внимание физиологи.
А нельзя ли, решили они, использовать эти машины для изучения тех самых умственных действий человека, которые так блестяще имитируют машины? Для познания процессов, происходящих в мозгу человека, в его нервной системе? Не помогут ли они понять законы жизнедеятельности организма, процессы, протекающие в его органах, их взаимосвязь, чуткую и точную работу нервной системы, сложную и мудрую деятельность мозга, природу чувств, разума, воли, темперамента? Не научат ли машины людей управлять всеми сложными процессами в живом организме?
Точнее, нельзя ли использовать кибернетические машины в качестве моделей?
Пока ребенок подрастает и познает мир, он ломает не одну игрушку: что там внутри? Чтобы изучить работу органов, нервной системы, мозга человека, ученым, увы, было недостаточно экспериментов над животными и вскрытия трупов. Это помогало ответить далеко не на все вопросы.
Конечно, живые модели — животные и их органы — и сейчас одно из основных пособий для физиолога, изучающего человеческий организм. Но уже давно обратили на себя внимание модели физические и физико-химические, как более доступные и в некоторых случаях точно имитирующие многие явления в живом организме.
Так были созданы модели сердца, почек, легких. Они не только позволили глубоко изучить работу этих жизненно важных органов, но и послужили прообразом искусственных сердец, почек и легких, спасших уже не одну человеческую жизнь.
Но с моделированием нервной системы дело обстояло куда сложнее, хотя первую физическую модель нервного возбуждения ученые испытали еще лет сто назад. Они пытались делать выводы о принципах распространения нервных импульсов по нервным стволам, наблюдая, как ведет себя железная проволока в азотной кислоте. А в начале восьмидесятых годов прошлого века для исследования деятельности центральной нервной системы физики использовали новейшее изобретение того времени — телефон. Но все это было слишком примитивно.
Мысль об использовании электронных машин в качестве моделей пришла, конечно, не случайно.
При описании действий электронных машин невольно приходилось применять слова, которые до некоторых пор употреблялись только по отношению к человеку: машина вычисляет, переводит, анализирует, запоминает, предсказывает… Ее действия поражали осмысленностью и целеустремленностью.
Но не только при упрощенном описании, даже при глубоком изучении работы электронных машин ученым бросилась в глаза полная иллюзия того, что они функционируют, как человек. Они не могли не прийти к выводу, что иначе и быть не может: в механизме и организме, в работе электронных машин и в работе нервной системы оказалось много общего. И прежде всего принцип действия. Нерв работает по принципу «да — нет»: либо он возбужден, либо находится в покое; он или проводит импульс раздражения, или нет.
Математики дополнили физиологов: в какой стране, каким конструктором ни были бы построены электронные машины, как ни разнообразны они по своему устройству, все они состоят из большего или меньшего количества радиоламп и транзисторов. А лампы и транзисторы по своей
Что же тут общего? Внешне ничего, а по существу очень многообещающее сходство: принцип действия, основанный на системе «да — нет».
Когда в Совете по кибернетике намечались первые планы исследовательских работ для объединения кибернетики с физиологией и биологией, не обошлось без возражений. Скептики с трудом признали аналогию в работе машин и нервной системы достаточной для сопоставлений. Как можно, возражали они, даже пытаться изучать умственную деятельность человека на примере машин, умеющих ответить только на вопрос «да» и «нет». Ведь это далеко не единственные логические задачи, которые приходится решать человеку. Их множество. Всякая математическая проблема обычно содержит большое разнообразие логических звеньев. Сложная задача всегда складывается из ряда мелких, в ней обычно тянется цепочка логических построений: «если» получается такой результат, «то» неизбежно определенное продолжение. Данное число надо сложить с тем «или» другим. Надо сделать «не» то, «не» другое, а третье. Есть и такие категории логических задач: «или — или», «не — не». Вот и подумайте: может ли электронная машина, умеющая говорить лишь «да» и «нет», служить моделью для изучения разнообразных логических действий мозга? Не станем же мы в XX веке пользоваться такими диковинными моделями, как железная проволока, телефон или дверной замок. Хотя, казалось бы, кто нам мешает? Ведь и дверной замок работает по принципу «да — нет». Все знакомые, которым вы дадите ключ от своего дома, могут беспрепятственно войти в него. Чужой, не имеющий соответствующего ключа, замок не откроет. Простой механизм, замок, решает логическую задачу: «да» или «нет», «свой» или «чужой». Для этого замок нуждается лишь в соответствующем ключе. И тем не менее хоть дверной замок, как и нервная система человека, тоже работает по принципу «да — нет», никто не видел, чтобы этот самый замок управлял полетом самолета или помог первокласснику решить титаническую задачу сложения «2 + 2».
Но такое умозаключение отнюдь не потушило оптимизма защитников кибернетических моделей.
— Да, — соглашались они, — кибернетическая ячейка может ответить лишь на вопрос «да» или «нет», но, войдя в машину, решает сложнейшие задачи. Дверной замок не может управлять полетом самолета, а электронно-вычислительная машина уже управляет. И из этого мы исходим. То, что из элементарных ответов она сплетает решение сложнейших проблем, только подчеркивает ее сходство (по принципу действия, конечно, не больше!) с высокоорганизованным аналогом. Как же нервная система, отдельные элементы которой могут «говорить» лишь «да» и «нет», решает глубокую и неисчерпаемую проблему общения с внешней средой? Столь элементарный принцип работы нервных клеток приводит к удивительному многообразию ощущений живого организма. Простое решение не значит примитивное. Наоборот, часто самое простое — самое идеальное или даже гениальное… Ведь и природа «ухитрилась» смастерить вселенную — звезды, планеты, людей, деревья из одних и тех же элементарных частиц…
Оппоненты, как видно, упустили из виду, что действия кибернетических машин запрограммированы человеком. А человек, встречаясь со сложной проблемой, всегда старается решить ее по частям, свести сложный вопрос к ряду простейших. Разница, конечно, в том, что человек делает это сознательно, а машина — совершенно бессознательно, но гораздо быстрее. Она слепо выполняет программу, заданную ей конструктором, использовавшим при ее создании не только достижения радиотехники, но и законы логики. Таким образом, в самой природе «умственной» деятельности кибернетических машин лежит аналогия с умственной деятельностью человека, и от этого сходства и хотели оттолкнуться физиологи. Машину можно собрать и разобрать, задать ей ту или иную проблему и со стороны исследовать логику решения, последовательность возникновения вариантов, реакцию машины на то или иное усовершенствование ее схемы — с мозгом так поступить нельзя.