Далекое будущее Вселенной Эсхатология в космической перспективе
Шрифт:
С*-алгебры хорошо известны в квантовой механике. Стандартная математическая формулировка этой физической теории дается в терминах состояний данной квантовой системы, которые представляются как векторы в пространстве, называемом гильбертовым.Однако существует и другая формулировка квантовой механики, а именно формулировка в терминах С*-алгебр. Эта формулировка даже более удовлетворительна, чем стандартная. Почему? Потому что элементами этой алгебры являются измеряемые свойства квантовых систем (так называемые наблюдаемые); а измеряемые свойства в физике всегда более фундаментальны, чем чисто теоретические.
Как ни удивительно, С*-алгебры можно использовать и для формулирования общей теории относительности Эйнштейна. Обычно общая теория
33
Идея Героха была развита далее в [8, 9, 16, 17].
Эта алгебра гладких функций обладает одним простым свойством: умножение двух функций не зависит от порядка факторов, то есть если fи g— гладкие функции в пространстве–времени, то f• g =g• f; такое умножение мы называем коммутативным,а алгебры, обладающие таким свойством, — коммутативными алгебрами.Оказывается, от этого простого свойства зависят многие важные черты геометрических пространств. Это становится очевидно, если мы от него избавимся. Алгебры, лишенные этого свойства, именуются некоммутативными алгебрами.Ален Коннэ [1] предложил рассматривать эти алгебры так же, как алгебры гладких функций, и допустить, что они также определяют некоторые пространства. Эта идея сработала, и эти новые пространства сейчас называются соответственно некоммутативными пространствами.Геометрическая теория, выросшая из исходной работы Коннэ, названа некоммутативной геометрией.Особую роль в этой новой геометрической теории играют пространства, определяемые в терминах некоммутативных С*-алгебр.
Некоммутативные пространства представляют собой мощные обобщения обычных (коммутативных) пространств. Многие пространства, которые до сих пор считались трудно описываемыми или патологическими, изящно ложатся в картину некоммутативной геометрии. Удивительное свойство некоммутативных пространств — их глобальный характер. В понятийном поле некоммутативной геометрии все локальные понятия, такие, как понятия точки и ее окрестностей, бессмысленны в принципе.
Подведем итоги. С*-алгебры можно использовать:
1. Для формулировки квантовой механики.
2. Для формулировки общей теории относительности.
3. Для определения некоммутативного пространства.
В свете этих результатов вполне естественно искать С*-алгебру, которая могла бы выполнять все это вместе. При этом квантовая механика и общая теория относительности были бы соответственно обобщены и объединены в теоретическом поле некоммутативного пространства. Ценой такого объединения стала бы нелокальность. Дальше я приму, что такая С*-алгебра (обозначим ее буквой А) найдена, и предположу, что она корректно описывает модель физики ниже планковского порога. Отметим, что, даже не зная точной формы алгебры А, из самого ее существования можно вывести множество важных фактов, касающихся гипотетического фундаментального уровня [34] . Важно отметить, что недавно были обнаружены некоторые глубокие связи между некоммутативной геометрией и такими популярными кандидатурами на финальное объединение, как теория суперструн и М–теория [3, 19].
34
В сущности, кандидатура на роль такой алгебры предлагается в [11, 12, 14, 15]. Однако, поскольку модель, представленная в этих работах, очевидно, не окончательная, мы не станем здесь углубляться в ее детализацию.
5.4. Возникновение времени
В некоммутативной геометрии не существует понятия времени как последовательности моментов (поскольку моменты — понятия локальные), но понятие состояния физической системы остается валидным. Это вызвано тем, что понятие состояния нелокально: находиться в том или ином состоянии может система в целом. С каждой С*-алгеброй может быть связана другая алгебра, называемая алгеброй фон Неймана.Грубо говоря, алгебра фон Неймана — это С*-алгебра вместе с определенным состоянием [35] . Это состояние исполняет две функции.
35
Точное определение см., напр., в [20].
Во–первых, оно позволяет нам определить параметр t, имитирующий время.Необходимо подчеркнуть, что это не обычное время: он только имитирует время (говоря технически, t — параметр однопараметрической группы). Он подобен времени, поскольку, используя параметр t, мы можем записать динамическое уравнение, описывающее поведение системы, однако это не время в обычном смысле слова, поскольку параметр t зависит от состояния: если система переходит в иное состояние, значение параметра t меняется и вместе с ним меняется также весь динамический режим.
Во–вторых, состояние, определяемое алгеброй фон Неймана, можно рассматривать как обобщенную вероятность(обобщенную по отношению к вероятности, с которой мы встречаемся при стандартном вычислении вероятностей; строго говоря, это обобщенная мера вероятности).По определению, состояние — это функционал на алгебре фон Неймана, положительный и нормированный к единице точно так же, как всякая мера вероятности. В контексте некоммутативной геометрии вообще невозможно говорить о вероятности отдельных событий, и отсутствие времени в обычном смысле не позволяет связывать с вероятностью чувство «неопределенного ожидания». Тот, кто любит воображаемые картины, может представить себе эту обобщенную вероятность как «поле глобальных возможностей», обладающее, однако, определенной степенью реальности.
Как видим, алгебры фон Неймана являются одновременно «динамическими объектами» и «вероятностными объектами». В некоммутативном режиме любая динамика вероятностна, а у каждой вероятности есть динамический аспект. Только после прохождения планковского порога динамика и вероятность расщепляются и становятся независимыми понятиями. Квантовую механику можно рассматривать как промежуточную ступень, на которой еще сохраняется определенная связь между динамикой и вероятностью. Хорошо известно, что динамическое уравнение квантовой механики (уравнение Шредингера) описывает эволюцию вероятностей: в каждый момент времени возможны различные результаты измерений (данной измеримой величины), каждое со строго определенной вероятностью. Однако в момент измерения это «поле возможностей» схлопывается в единственное значение — то самое, которое мы получаем в результате измерения. Этот эффект, широко обсуждаемый в квантовой механике, известен под именем коллапса волновой функции(или редукции вектора состояния).До сих пор с удовлетворительным объяснением этого эффекта имеются серьезные трудности; однако в рамках некоммутативной модели оно дается очень легко [15].
Но что же у нас со временем? Как оно возникает за пределами некоммутативной эры? Математика решает эту проблему очень красиво. Если с помощью определенного отношения эквивалентности мы склеим некоторые элементы первоначальной алгебры А, то картина становится грубее: она выглядит так, как будто в дело вступают некие усредняющие процессы, и в результате различные «параметры t» сливаются воедино и делаются независимыми от состояния. Так рождается известное нам время [11].