Далекое будущее Вселенной Эсхатология в космической перспективе
Шрифт:
5.5. История начала и конца
Начало и конец Вселенной в классической космологии (то есть не принимающей во внимание эффекты квантовой гравитации) известны под техническими наименованиями начальнойи конечной сингулярностей.Доказано несколько важных теорем, утверждающих, что эти сингулярности неизбежны при самых общих условиях, которым, как предполагается, удовлетворяет любая неквантовая вселенная [6]. Но что, если мы все-таки примем во внимание эффекты квантовой гравитации? Хотя широко распространено мнение, что будущая теория квантовой гравитации (или какая-либо иная конечная теория) избавит нас от сингулярностей, существует несколько работающих моделей, свидетельствующих об обратном. Во всяком случае, здесь возможно и «да», и «нет».
Точное математическое описание сингулярностей представляет
К немалому нашему удивлению, все виды сингулярности (даже сильнейшие), возникающие в общей теории относительности, поддаются анализу в терминах некоммутативной геометрии [10, 13]. Более того, этот анализ помогает нам понять, как сингулярности возникают [36] . Как мы уже знаем, на уровне некоммутативной геометрии понятие локализации в принципе бессмысленно, однако до некоторой степени может быть заменено понятием состояния. Показано, что в некоммутативном режиме нет разницы между сингулярным и несингулярным состояниями: все состояния существуют на равных. Однако, если мы перейдем от некоммутативного описания Вселенной к обычному коммутативному описанию, возникает обычное пространство–время со своими четко локализованными событиями, а некоторые состояния превращаются в сингулярности.
36
Эти результаты не зависят от некоммутативной модели объединения, коротко представленной в предыдущем разделе.
Если мы свяжем эти строгие математические результаты с предложением (кратко обрисованным в предыдущем разделе) смоделировать с помощью некоммутативной геометрии фундаментальный уровень физики, то нам откроется возможность новой интерпретации. Как мы уже видели, на вопрос о том, может ли будущая теория квантовой гравитации изгнать из нашего космологического сценария сингулярности, давались два взаимоисключающих ответа — «да» и «нет»; теперь же на сцену выходит третья возможность — фундаментальный уровень физики (ниже планковского масштаба) оказывается вневременным и внепространственным, и вопрос о существовании начальной и конечной сингулярностей в отношении этой эры лишен смысла. С некоммутативной точки зрения мир «регулярен», хотя и резко отличается от мира постпланковской эпохи. Только когда Вселенная совершает «фазовый переход» от некоммутативной геометрии к коммутативной, возникает пространство–время вместе со своими сингулярными границами. Следовательно, с точки зрения макроскопического наблюдателя, всегда находящегося в пространстве–времени, это выглядит так, как будто Вселенная имела начало (начальную сингулярность) в конечном прошлом и, возможно, встретит свой конец (конечную сингулярность) в конечном будущем. Сами понятия начала и конца становятся осмысленными только тогда, когда в распоряжении макроскопического наблюдателя имеется глобальное время, простирающееся (или текущее) из прошлого в будущее.
Рассмотрим дальше точку зрения макроскопического наблюдателя. Мы ищем планковскую эру «в двух направлениях»: назад во времени, пока не достигнем планковской плотности PI=10 93g.cm – 3; и все глубже и глубже в пространстве, пока не достигнем планковского расстояния L PI=10 –33cm. С нашей макроскопической точки зрения эти два направления различны, но на фундаментальном уровне нет ни пространства, ни времени; следовательно, эти два направления суть одно и то же. В этом смысле начало и конец Вселенной существуют всегда и везде.
5.6. Результаты и предположения
В предыдущих разделах я представил некоторые новые идеи, относящиеся к проблеме времени в современных космологических и физических исследованиях. Я сделал это в том порядке, который кажется мне наиболее подходящим для читателя, пробирающегося по логическим лабиринтам современных физических теорий и моделей. Попробуем теперь сложить из кусочков информации, добытых на этом пути, более связный космический сценарий.
Начнем с фундаментального уровня. Пространства нет, времени — тоже. Слова «начало» и «конец» не имеют никакого смысла. Вселенная просто существует. Мало сказать, что все физические силы едины — это целое максимально замкнуто на понятийном уровне. Такие, казалось бы, различные понятия, как динамика, причинность, вероятность (и некоторые другие, о которых я не имел случая упомянуть) всего лишь различные аспекты одной и той же математической структуры. Отсюда вопрос: почему это «совершенное состояние» оказалось нестабильным, почему Вселенная вынуждена была перешагнуть через планковский порог? Думаю, этот вопрос неверно поставлен. Мы склонны думать об этой «зародышевой эпохе» как о находящейся «в начале». Однако, как мы уже видели, можно считать, что на расстояниях ниже планковского масштаба она существует даже и сейчас. Если это так, то фундаментальный уровень все еще существует [37] , и он не перешагнул через планковский. Существование порога и все, что происходит на нашей стороне — просто часть некоммутативной игры [38] .
37
Слова «все еще» не вполне адекватны по отношению к существованию вне времени, однако сейчас мы говорим со своей точки зрения, для которой время существует.
38
Некоторые технические детали, вероятно, помогут читателю лучше понять эти рассуждения. Математическая структура некоммутативного режима определяется С*-алгеброй А. Алгебра А имеет так называемый центр —подмножество элементов А, коммутирующих со всеми остальными элементами А. Переход к коммутативной геометрии представляет собой сужение алгебры А до ее центра (или до его подмножества). Однако центр всегда принадлежит А; он относится к самой сути некоммутативного режима. Именно в этом центре обитаем мы.
Мы знаем механизм, действующий в планковскую эпоху, который приводит к появлению (независимого от состояния) времени в постпланковскую эпоху (он описан в разделе 4). Однако нам нужно нечто большее — время должно быть глобальным. Некоторые признаки указывают на то, что глобальный характер времени связан с некоммутативным происхождением энтропии и второго закона термодинамики [2].
Некоммутативная модель фундаментального уровня, исследованная в этой статье, весьма привлекательна с концептуальной точки зрения, однако на настоящей стадии развития носит чисто гипотетический характер. Чтобы создать из нее конкурентоспособный сценарий происхождения космоса, требуется еще много работы. Настоящая история начинается по нашу сторону планковского порога. Эта история началась, и она открыта в далекое будущее.
Литература
1. Connes, A., Non-commutative Geometry(Academic Press, New York, London, 1994).
2. Connes, A, and Rovelli, C, "Von Neumann Algebra Automorphisms ant Time-Thermodynamics Relation in Generally Covariant Quantum Theories", Class. Q. Grav., 11,2899–917 (1994).
3. Frohlich, J., Grandjean, O., and Recknagel, A, "Supersymmetric Quantum Theory and (Non-commutative) Geometry", Commun. Math. Phys., 193,527–94 (1998). Hep-th/9612205.
4. Geroch, R., "Einstein Algebras", Commun. Math. Phys., 26,271–275 (1972).
5. Hawking, S. W., "The Existence of Cosmic Time Functions", Proc. Roy. Soc. Lond., A 308,433–35 (1968).
6. Hawking S. W., and Ellis, G. F.R., The Large Scale Structure of Space-Time(Cambridge University Press, Cambridge, 1973).
7. Heller, M., Theoretical Foundations of Cosmology(World Scientific, Singapore, London, 1992).
8. Heller, M., "Einstein Algebras and General Relativity", Int. J. Theor. Phys., 31,277–88 (1995).
9. Heller, M., and Sasin, W., "Sheaves of Eindtein Algebras", Int. J. Theor. Phys., 34,387–98 (1995).
10. Heller, M., and Sasin, W., "Non-Commutative Structure of Singularities in General Relativity", J. Math. Phys., 37,5665–71 (1996).
11. Heller, M., and Sasin, W., "Emergence of Time", Phys. Lett. A250, 48–54 (1998).