Дао физики
Шрифт:
Важно осознать, что статистические формулировки законов атомной и субатомной физики не отражают нашего незнания физической ситуации, как в случае с использованием вероятностей страховыми компаниями или игроками в азартные игры. В квантовой теории вероятность следует воспринимать как основополагающее свойство атомной действительности, управляющее ходом всех процессов и даже существованием материи. Субатомные частицы не столько существуют в определенное время в определенных местах, сколько «могут существовать», а атомные явления не столько происходят определенным образом в определенные моменты времени, сколько «могут происходить».
Так, мы не можем точно сказать, где в данный момент находится электрон данного атома. Его местонахождение зависит от действия силы притяжения ядра и воздействия других электронов того же атома. Эти обстоятельства создают вероятностную модель местонахождения электрона в различных областях атома. Иллюстрация на рис. 9 может служить примером нескольких вероятностных моделей. Электрон, вероятнее всего, находится там, где фон светлый, и, менее вероятно, там, где фон темный. Очень важный момент — то, что весь паттерн соответствует
Контраст между двумя типами описания — классические термины для подготовки эксперимента и вероятностные функции для наблюдаемых объектов — приводит к серьезным метафизическим проблемам, которые до сих пор остаются нерешенными. Тем не менее, на практике эти проблемы попросту обходят, описывая наблюдающую систему в операциональных терминах, то есть в терминах предписаний, позволяющих ученым подготовить и провести эксперимент. Благодаря этому измерительные приборы и сами ученые представляют собой единую комплексную систему, которая не делится на самостоятельные, четко определенные части. Поэтому не нужно описывать экспериментальное оборудование как систему самостоятельной физической природы. Для дальнейшего описания процесса наблюдения мы приведем конкретный пример с простейшей физической единицей — субатомной частицей, такой, как электрон. Если мы задались целью наблюдать и измерять такую частицу, нам сначала придется ее изолировать или даже создать в процессе того, что называется подготовкой эксперимента. После того, как частица готова для наблюдения, можно измерить ее характеристики, и в этом состоит процесс измерения. Можно символически описать ситуацию следующим образом. Частицу А готовят в точке А, затем она перемещается из А в В и подвергается измерениям в точке В. На практике и подготовка и измерение частицы могут представлять собой целый ряд довольно сложных процессов. Так, например, в физике высоких энергий при подготовке столкновений частиц частицы-снаряды разгоняются, вновь и вновь двигаясь по круговой дорожке, до тех пор, пока их энергия не возрастет до нужного уровня. Этот процесс происходит в ускорителе частиц. Когда необходимое количество энергии приобретено, частицы покидают ускоритель (А) и перемещаются в район мишени (В), где сталкиваются с другими частицами. Столкновения происходят в пузырьковой камере: частицы оставляют видимые следы, которые потом фотографируются. Подвергая математическому анализу следы частиц, ученые могут говорить о свойствах частиц; при этом часто используют компьютеры: анализ очень сложен. Все эти процессы составляют акт измерения.
Важным моментом является то, что частица — это промежуточная система между процессами в точках А и В. Она существует и имеет смысл только в этом контексте — не как самостоятельная единица, а как промежуточное звено между процессами подготовки и измерения. Свойства частицы нельзя определить независимо от этих процессов. Если в подготовку эксперимента вносятся изменения, свойства частицы тоже изменяются.
С другой стороны, если мы говорим о «частице» или какой либо другой наблюдаемой системе, мы, очевидно, подразумеваем, что существует некоторая самостоятельная единица, которую сначала подготавливают, а потом измеряют. Основная проблема наблюдения в атомной физике, по словам Генри Стаппа, заключается в том, что «наблюдаемая система должна быть изолированной, чтобы ее можно было определить, и, в то же время, взаимодействующей для того, чтобы ее можно было наблюдать» [70, 1303]. Квантовая теория решает эту проблему прагматическим образом, выдвигая требование, которое заключается в том, что наблюдаемая система должна быть свободна от внешних воздействий, вызванных процессом наблюдения, на протяжении определенного периода времени между подготовкой и последующим измерением. Это возможно в том случае, если подготавливающие и измеряющие приспособления находятся на большом физическом удалении, так что наблюдаемый объект может переместиться из точки подготовки в точку измерения.
Насколько же большим должно быть пространство между приборами и объектом? В принципе, оно должно быть бесконечно большим. В рамках квантовой теории, понятие самостоятельной физической единицы четко определено только при том условии, что эта единица достаточно удалена от средств наблюдения. На практике это невозможно, да и не нужно. Здесь нам следует не забывать об основном принципе современной науки — принципа относительности всех понятий и теории. В данном случае это означает, что понятие самостоятельной физической единицы не обязательно должно быть четко определено: достаточно приблизительного определения. Это делается следующим образом. Наблюдаемый объект — это воплощение взаимодействия между процессами подготовки и измерения. Как правило, это взаимодействие носит сложный характер и состоит из различных эффектов, действующих на различных расстояниях — имеет различные «ранги», как говорили физики. Теперь, если наиболее важная часть взаимодействия имеет длинный ранг, проявление этого эффекта с длинным рангом переместится на большое расстояние. В таком случае оно будет свободно от внешних воздействий и сможет рассматриваться в качестве самостоятельной физической единицы. Поэтому в рамках квантовой теории все самостоятельные физические единицы представляют собой идеальные модели, имеющие значение лишь
Так, квантовая теория свидетельствует о принципиальном единстве Вселенной. Она показывает, что нельзя разложить мир на независящие друг от друга мельчайшие составляющие. В послесловии мы более подробно поговорим об этой квантовой взаимосвязанности в терминах «нелокальных» соединений, постулированных теоремой Белла. Углубляясь в толщу материи, мы обнаруживаем, что она состоит из частиц, которые, тем не менее, не похожи на «строительные кирпичики» в понимании Демокрита и Ньютона. Это просто идеальные модели, удобные с практической точки зрения, но лишенные фундаментального знания. По словам Нильса Бора, «изолированные материальные частицы — это абстракции, свойства которых могут быть определены и зафиксированы только при их взаимодействии с другими системами» [6,57].
Копенгагенская трактовка квантовой теории не является общепринятой. Было выдвинуто несколько альтернативных вариантов интерпретации, и возникающие при этом философские проблемы еще очень далеки от решения. И все же всеобщая взаимосвязанность всех вещей и событий, очевидно, принципиально присуща атомной действительности, несмотря на разнообразие интерпретаций математического содержания теории. Следующий отрывок из недавней публикации Дэвида Бома, одного из главных оппонентов копенгагенской трактовки, красноречиво свидетельствует об этом: «Возникает новое представление о неразрывном единстве, отрицающее классические понятия о том, что мир можно разложить на самостоятельные, не зависящие друг от друга части... Общепринятые классические понятия о том, что фундаментальной реальностью являются именно эти независимые „элементарные составные части“ мира и что самые разнообразные системы возникают вследствие различных соединений и взаиморасположений этих частей, превращаются в свою противоположность, что неделимое квантовое единство всей Вселенной является наиболее фундаментальной реальностью, а эти относительно независимые составные части — только лишь частные единичные формы внутри этого единства» [5, 96]. Итак, на уровне атома твердые материальные объекты классической физики превращаются в вероятностные схемы, которые, к тому же, отражают не столько вероятности вещей, сколько вероятности соединений между ними. Квантовая теория заставляет нас взглянуть на мир не как на коллекцию физических объектов, а как на сложную сеть взаимоотношений различных частей единого целого. И в то же время именно так всегда воспринимали мир восточные мистики, и высказывания некоторых из них почти полностью совпадают со словами атомных физиков. Вот два примера:
«Материальный объект превращается в нечто отличное от того, что мы видим перед со бой в настоящий момент, это не самостоятельный объект на фоне или в окружении остальной природы, а неотъемлемая часть и сложное проявление единства всего того, что мы видим» [3,993].
«Вещи получают свое существование и свою природу посредством взаимозависимости и не являются ничем сами по себе» [59, 138].
Если эти утверждения могут служить образцом того, какой представляется природа восточным мистикам, то два следующих утверждения, сделанных атомными физиками, могут рассматриваться в качестве точного описания мистического мировосприятия:
«Любая элементарная частица — это не независимая неразложимая на части единица. В сущности, это набор отношений, связывающих частицу с внешним миром» [70, 1310].
«Таким образом, мир предстает перед нами в качестве сложной ткани из различных событий, в которой соединения различных типов чередуются, накладываются друг на друга или сочетаются, определяя таким образом структуру целого» [34, 107].
Образ переплетенной космической сети, порожденной исследованиями современной атомной физики, широко использовался на Востоке для того, чтобы охарактеризовать мистическое восприятие природы. Для индуистов Брахман — это основная нить космической сети, конечная основа всего сущего:
"Тот, вокруг кого сплетаются небо, земля и атмосфера, И ветер, с дыханием всего живого. Его лишь знай как единственную Душу". «Мундака Упанишада», 2. 2. 5.В буддизме образ космической сети играет еще более важную роль. Основное содержание «Аватамсака-сутры» (см. гл. 6) — описание мира как совершенной сети взаимоотношений, в которой все вещи и явления взаимодействуют друг с другом бесконечно сложным образом. Буддизм Махаяны располагает большим количеством притч и сравнений, иллюстрирующих эту вселенскую взаимосвязанность, некоторые из которых мы будем обсуждать в дальнейшем в связи с релятивистской версией «философии сети» в современной физике.. И наконец, космическая сеть играет главную роль о тантрическом буддизме, одно из течений Махаяны, возникшем в Индии примерно в третьем веке н. э. и представляющем собой основную школу тибетского буддизма на данный момент. Сочинения этой школы называются тантрами (санскритский корень этого слова означает «ткать»). Это название должно указывать на взаимопереплетенность и взаимозависимость всех вещей и явлений.