Девять цветов радуги
Шрифт:
Объяснение законов излучения черного тела явилось той необходимой проверкой, которая подтвердила правильность новых теоретических положений, выдвинутых Планком. Они в равной мере справедливы для всех видов излучений — не только световых, но и для всего спектра электромагнитных волн, начиная от самых длинных радиоволн, кончая рентгеновскими и гамма-излучениями.
Однако в радиотехнике квантовыми представлениями практически не пользуются. Величина отдельного кванта на радиочастотах столь ничтожна, что излучаемую энергию радиоволн можно, с точки зрения практики, считать величиной непрерывной. Для примера стоит назвать численную величину кванта для
8
Энергию в 1 электроновольт приобретает электрон, пролетев между обкладками конденсатора, к которому приложено напряжение, равное 1 вольту.
Зернистая структура излучаемой энергии становится заметной на световых волнах. Так, на волне 1,2345 микрона (ближняя инфракрасная область спектра) энергия кванта точно равна 1 электроновольту. На красной границе видимого спектра она возрастает примерно до двух, а на фиолетовой границе — до 4 электроновольт. Но все же эти значения еще чрезвычайно малы в сравнении с 1 квантом энергии, излучаемой в области очень коротковолновых гамма-лучей. Так, на волне в 0,007 миллимикрона энергия кванта становится равной 1770 тысяч электроновольт. Такую энергию приобретает электрон, разгоняясь в электростатическом поле конденсатора, к которому приложено напряжение 1770 тысяч вольт.
Не следует забывать при этом, что эта энергия излучается черным телом либо такой огромной порцией, либо вовсе не излучается. То же происходит и при поглощении — либо всё, либо ничего.
Отказываясь от привычных, казавшихся незыблемыми представлений и формулируя новые идеи, Планк, возможно, не предполагал, что им суждено сыграть революционную роль в развитии основных физических представлений. По крайней мере, вначале он ставил перед собой совершенно конкретную задачу — теоретически обосновать законы излучения черного тела.
Но уже после первого успеха все прогрессивные физики оценили силу идей Планка. Они поняли, что квантовые представления нечто значительно большее, чем это могло казаться вначале. Они использовали новые идеи при исследовании чрезвычайно широкого круга явлений взаимодействия лучистой энергии и вещества. И во всех случаях эти идеи помогали им продвигаться дальше, постигать новые тайны природы.
Квантовая теория получила необычайное развитие. Она помогла установить общность многих важнейших явлений, казавшихся до того совершенно не связанными между собой. Она помогла науке открыть новые необычайные горизонты и, в частности, продвинуться еще на один шаг в направлении разгадки природы света. Этот шаг суждено было сделать гениальному физику Альберту Эйнштейну (1879–1955). В этом ему помогли не только идеи Планка, но и очень важный закон, установленный русским ученым Александром Григорьевичем Столетовым (1839–1896).
Фотоэффект
Проводя свои опыты, Герц попутно заметил, что искра, проскакивавшая между электродами вибратора, странно себя ведет. Казалось, на нее влиял свет. Когда Герц освещал электроды вибратора сильным светом, появление искры учащалось. Стоило убрать источник света — и частота снова резко уменьшалась.
Не так отнесся к наблюдению, сделанному Герцем, профессор Московского университета А. Г. Столетов, старший товарищ . Н. Лебедева. Столетов поставил множество опытов, создал для их проведения специальную аппаратуру и столь глубоко и основательно исследовал новое явление, что результаты его работы привели к замечательному открытию.
Без него ученые не получили бы новых чрезвычайно ценных сведений о природе света, а современное общество не знало бы ни телевидения, ни фототелеграфии, ни звукового кино, ни многих-многих других полезнейших технических новшеств, без которых сейчас невозможно представить себе нашу жизнь.
Явление, изученное Столетовым в 1888–1889 году, называется фотоэффектом. В результате исследований Столетов установил новый физический закон, носящий его имя. К сожалению, в те годы наука еще ничего не знала о существовании электронов (они были открыты лишь в 1897 году), и поэтому Столетов не мог дать правильного физического толкования новому закону. Это было сделано позже, в 1905 году, Эйнштейном.
Чтобы лучше разобраться в явлении фотоэффекта, стоит хотя бы мысленно (а тем, кому удастся, в школе или кружке) провести сравнительно несложный опыт.
Для его проведения необходима электрическая батарея, гальванометр или микроамперметр для измерения силы тока и специальный электровакуумный прибор, называемый фотоэлементом. Его мы и подвергнем исследованию.
Простейший фотоэлемент представляет собой стеклянный баллон, внутри которого находятся два электрода. Чтобы улучшить работу, электродам фотоэлемента часто придают особую форму. Один из них в виде тончайшей металлической пленки (состоящей из соединения цезия с сурьмой или кислорода, серебра и цезия или других элементов) наносится на внутреннюю поверхность баллона, которому специально придана шарообразная форма. Второй электрод представляет собой колечко из тонкой проволоки, находящейся в районе центра сферы. Первый электрод является катодом, вернее, фотокатодом, а второй — анодом.
Фотоэлементы делятся на две большие группы. В фотоэлементах первой группы стараются создать максимально возможный вакуум внутри баллона; у фотоэлементов второй группы внутри баллона содержится очень небольшое количество газа. Фотоэлементы первой группы менее чувствительны, но зато обладают многими другими ценными свойствами.
В нашем опыте мы применим фотоэлемент с высоким вакуумом, то есть такой, из которого удален практически весь воздух. Кроме того, для удобства эксперимента стоит изменить конструкцию нашего воображаемого фотоэлемента таким образом, что оба электрода будут представлять собой плоские пластинки совершенно одинаковых размеров, сделанные из одного и того же металла. Именно такой фотоэлемент изображен на схеме нашего опыта.
Присоединим к одному из электродов отрицательный зажим батареи, а к другому через гальванометр подключим положительный зажим. В этом случае первый электрод (отрицательный) будем называть катодом, а второй (положительный) — анодом. Поместим фотоэлемент в темный ящик. Стрелка гальванометра замрет на нуле. Но, если приоткрыть крышку ящика, она отклонится вправо. Чем больше света будет поступать в ящик, тем больший ток потечет через фотоэлемент, тем дальше вправо отклонится стрелка гальванометра.