Думай! Или 'Супертренинг' без заблуждений
Шрифт:
Код каждого белка записан в ДНК ядра клетки в виде цепочки нуклеотидов. Комбинация из трех нуклеотидов, называемая кодоном, кодирует одну аминокислоту. Последовательность кодонов в ДНК определяет последовательность аминокислот в белке. Ген – последовательность нуклеотидов, кодирующая один белок. Эта последовательность считывается с ДНК и записывается в матричной – РНК (м-РНК), этот процесс называется транскрипцией. мРНК – это как бы кусочек ДНК способный выходить из ядра в саркоплазму, где закрепляется на рибосомах. Транспортные РНК (тРНК) доставляют к мРНК аминокислоты. Один конец тРНК узнает на мРНК соответствующий кодон и прикрепляется к нему. Аминокислота, находящаяся на другом конце тРНК, сцепляется с аминокислотой соседней тРНК, таким образом, выстраивается цепочка белка.
Синтез белка очень сложный процесс и его интенсивность зависит от огромного количества факторов.
Прежде всего, считывание мРНК в ядре начинается под воздействием
Для запуска транскрипции РНК, необходимо так же развернуть спираль ДНК, для чего используется фермент РНК-полимераза.
На синтез белка сильнейшее влияние оказывает гормон роста (СТГ или соматотропин). По химическому составу соматотропин это белок, поэтому он не может свободно проникать в клетку, в отличие от стероидных гормонов, а воздействует на рецепторы, расположенные на поверхности клетки. Механизм действия гормона роста до конца не изучен, но точно известно, что он стимулирует деятельность РНК-полимераз и рибосомного аппарата клетки.
Ну и конечно для сборки белка требуется наличие в клетке достаточного количества аминокислот и запасов энергии. Без аминокислот не из чего будет строить белок, а энергия нужна для сборки молекулы.
И так, для успешного синтеза белка требуются, как минимум, следующие условия:
– высокий уровень анаболических гормонов в крови (тестостерона и соматотропина)
– наличие в клетке белков-рецепторов тестостерона
– активность ферментов и факторов транскрипции РНК (РНК-полимераз и др.)
– достаточное количество аминокислот в клетке
– запас энергии в клетке
Теперь осталось только ответить на вопрос – как именно тренировка влияет на синтез белка?
Должен разочаровать читателя детально объяснить механизм этого влияния на сегодняшнем уровне развития науки невозможно. Если о том, как происходит регуляция синтеза белка в простейших одноклеточных организмах, когда в клетке может идти строительство всех белков, закодированных в ДНК, ученые имеют определенное представление, то, как осуществляется регуляция синтеза белка в многоклеточных организмах, когда, теоретически, каждая клетка может синтезировать все возможные белки, закодированные в ДНК, но синтезирует лишь набор белков, присущий данному типу клеток, остается пока не известным. Да, гормоно-рецепторный комплекс разблокирует участок ДНК, в котором закодирован определенный белок, но как гормон узнает, какой именно ген в данный момент необходим клетке – миозин быстрого волокна или миозин медленного волокна, а может быть миоглобин? Генетикам предстоит еще долгий путь, прежде чем раскроются все тайны синтеза белка. А как же быть до тех пор?
На сегодняшний момент существует несколько гипотез, пытающихся объяснить влияние тренировки на синтез белка в мышце. Но все эти гипотезы можно объединить в два конкурирующих направления – теория накопления и теория разрушения.
Суть теории накопления состоит в том, что во время мышечной деятельности в клетке вырабатываются некие факторы-регуляторы, оказывающие влияние на процессы считывания информации с ДНК. Некоторые ученые относят к этим факторам повышение кислотности среды в результате мышечной деятельности, влияющее на спирилизацию ДНК. Некоторые относят к факторам-регуляторам свободный креатин – при интенсивной деятельности креатинфосфат, содержащийся в клетке, в целях восполнения энергии передает свою фосфатную группу на АДФ, превращаясь в креатин, и именно креатин, по мнению ученых, оказывает регулирующее воздействие на ДНК.
Думаю, что подобные процессы должны иметь место в регуляции интенсивности белкового обмена, – как известно в случае обездвиживания мышцы интенсивность синтеза белка в клетках снижается, то есть движение само по себе является фактором-регулятором белкового синтеза. Между тем я не могу отвести существенную роль этим процессам в гипертрофии мышц, так как свое регулирующее воздействие данные факторы оказывают непосредственно во время работы мышц, а синтез белка идет в основном после прекращения нагрузки во время отдыха, когда концентрация факторов-регуляторов уже возвращается к уровню, характерному для состояния покоя.
Я полагаю, что более полную картину способна сформировать теория разрушения, суть которой заключается в нижеследующем.
Как я уже упоминал выше – организм это саморегулируемая система, настроенная миллионами лет эволюции на поддержание постоянства внутренней среды. Разрушение внутренних структур организма автоматически запускает процессы, стремящиеся восстановить утраченное равновесие. Так разрушение белковых структур клетки должно тут активизировать восстановительные процессы синтеза белка, создав все необходимые условия для их протекания. То, что активность синтеза белка в поврежденной ткани в несколько раз выше, чем в нормальных условиях – это факт. Интенсивные восстановительные процессы не могут затихнуть сразу по завершению восстановления поврежденных структур. Как и все прочие процессы, процессы синтеза белка имеют некоторую инерцию, поэтому, в результате восстановления будет наблюдаться некоторый избыточный анаболизм, приводящий к превышению уровня белка в клетке над исходным. Другими словами, будет наблюдаться хорошо известная нам по восстановлению энергетических ресурсов суперкомпенсация. То есть восстановление белковых структур клетки подчиняется тем же общим законам адаптации, с которыми вы уже знакомы.
Обычно регулирующую роль тренировки в гипертрофии мышц сводят лишь к интенсификации процессов синтеза РНК в ядрах клеток. Между тем общий объем мышцы зависит
А теперь внимание! Как показывает ряд экспериментов (M Cabric и N.T.James) в ходе тренировок в мышечных клетках увеличивается количество клеточных ядер. Но ядра мышечных клеток не способны к делению! Так откуда же взялись новые ядра?
Ответ на этот вопрос можно найти в работах ученых, занимающихся проблемами регенерации травмированной ткани. Как оказалось, на этапе эмбрионального развития, не все клетки эмбриона, из которых развивается мышечная ткань, сливаются в мышечные волокна и утрачивают способность к делению, часть из них (около 10 %) остается в оболочке волокон в виде клеток-сателлитов. Клетки-сателлиты сохраняют способность к делению на протяжении всей жизни и являются резервом восстановления мышечной ткани. Только клетки сателлиты способны быть источником новых ядер в волокне. Как показывают эксперименты (Володина А.В., Женевская Р.П., Климов А.А. и Данилов Р.К., Улумбеков Э.Г. и Челышев Ю.А.) повреждение волокна приводит к активации клеток-сателлитов, которые, освободившись из оболочки, вступают в цикл деления, затем сливаются вместе, восстанавливая поврежденные волокна. Логично предположить, что к активации клеток-сателлитов после тренировки приводят процессы аналогичные травмам волокон. Многие знают на собственном опыте, что интенсивная тренировка, особенно после продолжительного перерыва, отзывается болью в последующие несколько дней отдыха. Боль явно свидетельствует о разрушениях внутренней структуры мышц. Микроскопические исследования показывают, что в результате тренировок в ряде мышечных волокон нарушается упорядоченное расположение миофибрилл, наблюдается распад митохондрий, а в крови повышается уровень лейкоцитов, как при травмах или инфекционном воспалении (Морозов В.И., Штерлинг М.Д. с соавторами). Разрушение внутренней структуры мышечного волокна во время тренировки, назовем его микротравмой, приводит к появлению в волокне обрывков белковых молекул, что активизирует лизосомы, «переваривающие», с помощью содержащихся в них ферментов, белковые структуры, подлежащие уничтожению. Если лизосомы не справляются с объемом повреждений, то через сутки наблюдается пик активности боле мощных «чистильщиков» – фагоцитов. Фагоциты – клетки, живущие в межклеточном веществе и крови, основная задача которых уничтожение поврежденных тканей и чужеродных микроорганизмов. Именно продукты жизнедеятельности фагоцитов вызывают воспалительные процессы и боль в мышцах, через сутки после тренировки. Но между тем, по-видимому, именно благодаря деятельности лизосом и фагоцитов повреждается оболочка мышечного волокна, и из нее высвобождаются клетки-сателлиты. Освободившись, клетки-сателлиты начинают цикл деления и сливаются с поврежденным волокном, увеличивая в нем количество ядер, тем самым, повышая его потенциальную возможность в синтезе белка.
В свете выше сказанного, я бы не стал полностью исключать возможность высвобождения клеток-сателлит в межклеточное пространство и слияние их в новые волокна, что достоверно наблюдалось в случае обширных повреждений мышечной ткани, правда, новые волокна в этих случаях образовывались в замен утраченных, что вовсе не приводило у общему увеличению количества волокон в мышце. Но, если предположить, что повреждения волокна не столь обширны, чтобы привести к его гибели, а клетки сателлиты пошли по пути слияния в новое волокно, то гиперплазия становится не таким уж невероятным фактом, как это принято считать. Тем более что есть ряд экспериментов выбивающихся из общих представлений о невозможности гиперплазии. Так Goneya W, удалось на 19–20 % увеличить количество мышечных волокон в лапах кошек, которых он заставлял тренироваться с прогрессирующей нагрузкой. А Yamada S, Buffinger N, Dimario J&Strohman R (1989) и Larson L&Tesch PA (1986) проводили взятия проб из мышечной ткани у элитных бодибилдеров, и контрольной группы людей, не обладающих значительной мускулатурой, анализ проб показал, что поперечное сечение волокон у элитных бодибилдеров лишь незначительно больше чем у представителей контрольной группы, в то время как поперечное сечение мышц различалось существенно, то есть бодибилдеры обладают большим количеством волокон по сравнению с контрольной группой, что может быть либо следствием гиперплазии волокон, либо элитные бодибилдеры от рождения обладали значительно большим количеством волокон, чем обычные люди, но эти волокна были крайне тонкими (так как до тренировки элитные бодибилдеры обладали мускулатурой обычных размеров). В последнее хочется верить меньше всего, так как эта теория ставит крест на возможности обычных людей добиться сколько-нибудь значительной гипертрофии мышц. Однако не будем зацикливаться на вопросах гиперплазии, и так как возможность последней у человека считается недоказанной, будем по-прежнему исходить из того, что рост мышц происходит исключительно по причине гипертрофии уже существующих волокон. Но вот одной из причин гипертрофии самих волокон, как раз и является увеличение в них количества клеточных ядер, что по оказываемому эффекту практически равносильно гиперплазии.