E=mc2. Биография самого знаменитого уравнения мира
Шрифт:
Совершенное ими открытие описывается в современных школах так часто, что нам уже трудно представить себе, насколько неожиданным оно оказалось. Резерфорд обнаружил следующее: сплошные непроницаемые атомы на самом деле почти полностью пусты. Представьте себе, что метеор падает в Атлантический океан и вместо того, чтобы так в нем и остаться, ударившись, в конце концов, об океанское дно, с громовым ревом вылетает назад. Подумайте о том, как трудно преодолеть устоявшиеся представления и понять: единственное объяснение происшедшего состоит в том, что никакой воды под поверхностью Атлантического океана на самом-то деле нет. Напротив, — по аналогии с тем, что обнаружил Резерфорд, —
Ничего, кроме пустого воздуха, там нет и, если бы в нем находилась телекамера, она показала бы нам, как метеор, пробив внешнюю пленку, падает в пустом пространстве. И только на самом дне океана находится некое мощное, чрезвычайно компактное устройство, которое способно схватить падающий метеор и швырнуть его назад, в открытое пространство. Примерно так же выглядит атом с его укрытым в самом центре ядром. Лишь вблизи внешней оболочки атома мечутся электроны, участвующие в обычных реакциях, таких как сгорание куска дерева в огне. Однако от центрального ядра атома, мерцающего в самой глубине совершенно пустого пространства, они далеки.
Если мы снова уподобим атомы шарикам, из которых состоит подшипник, то можно будет сказать следующее: Резерфорд обнаружил, что шарики эти почти полностью полые. Только в самой середке их кроется крошечная песчинка, именуемая ядром. Открытие неутешительное — оказывается, атомы состоят по преимуществу из пустоты! — однако само по себе оно ничуть не объясняет, какое отношение имеет к такому атому уравнение E=mc 2. «Сплошные» электроны, образующие внешнюю оболочку атома, не имеют ни малейшего намерения избавляться от своего материального существования и обращаться в вырывающиеся наружу потоки энергии.
Стало совершенно ясно, что теперь ученым надлежит заняться именно ядрами. Атомы содержат изрядное количество электричества, и если половина его распределяется по орбитам этих самых электронов, другая втиснута в сверхплотное центральное ядро. Способа, который позволял бы удерживать столь большой заряд в столь малом объеме, никто не знал. И все же там, в ядре атома, присутствовало нечто, способное запихать в ядро весь этот заряд и удерживать его, не давая извернуться и выскочить наружу. Атом был складским хранилищем скрытой энергии, на существование которой указывало уравнение Эйнштейна. В нем находились положительно заряженные частицы, которые мы называем протонами, — однако выяснить какие-либо относящиеся к ним подробности не удавалось никому.
В конце концов, ассистент Резерфорда Джеймс Чедвик все же сумел получить картину более ясную, — это произошло в 1932 году, когда он открыл еще одну скрывавшуюся в ядре частицу. Ею был нейтрон, получивший такое название потому, что он, походя размерами на протон, был электрически совершенно нейтральным. На то, чтобы обнаружить его, у Чедвика ушло больше пятнадцати лет. В какой-то момент проводимых Чедвиком исследований его студенты даже поставили пьесу, в которой рассказывалась о поисках этой частицы, обладающей столь малым числом свойств, что они в шутку прозвали ее «малотроном». Однако на того, кто провел годы рядом с громогласным и нетерпеливым Резерфордом, студенческие шутки большого впечатления произвести не могли. Чедвик был человеком тихим, однако к цели своей шел решительно и неуклонно.
Он вырос в трущобах Манчестера, а профессиональная его карьера едва не оборвалась в самом начале. Защитив у Резерфорда диссертацию, Чедвик перебрался в Берлин, чтобы заняться исследованиями в лаборатории вернувшегося туда Ханса Гейгера. Когда же началась Первая мировая война, Чедвик смиренно последовал совету местного представительства компании Томаса Кука, уверявшего, что с отъездом из Германии можно не спешить. В итоге, он провел четыре года как военнопленный — запертым в переоборудованных под лагерь конюшнях холодного и продуваемого всеми ветрами потсдамского ипподрома. Чедвик пытался проводить исследования и здесь, он даже сумел раздобыть радиоактивные препараты. В распоряжении компании «Берлин Ауэр» оказались запасы тория, который она предлагала немецкой публике в составе зубной пасты, заставлявшей зубы сиять белизной. Чедвик просто заказывал через охранников этот чудотворный отбеливатель и использовал его в своих опытах. Однако оборудование у него было до того скудное, что никаких серьезных результатов ему получить не удалось. Он отставал от хода науки и, вернувшись в Англию в ноябре 1918-го — по окончании войны, — с трудом наверстал упущенное. И больше уже никогда ничьим советам не следовал.
Теоретически, открытие, совершенное Чедвиком в 1932 году, должно было немедленно привести к другим, новым открытиям. Множество радиоактивных веществ испускало нейтроны, которыми можно было обстреливать, как из пулемета, ожидавшие их атомы. Поскольку нейтроны не имели электрического заряда, отрицательно заряженные электроны, образующие оболочку атомов, никак на них не воздействовали. Да и достигая ядра, они не встречали препятствий со стороны зарядов положительных. Ничто не мешало им проникать внутрь ядра. И стало быть, существовала возможность использовать нейтроны, как зонды, позволяющие понять, что там, внутри, происходит.
Однако, к большому разочарованию Чедвика, выяснить это ему так и не удалось. Чем старательнее обстреливал он ядро нейтронами, тем с меньшим успехом ему удавалось проникнуть внутрь их. Только в 1934-м другой исследователь сумел обойти эту проблему, добиться того, чтобы нейтроны с легкостью проникали в ядро, и поосновательнее разобраться в его структуре. Причем исследователь этот работал далеко не в лучшей научной лаборатории мира, а в таком месте, где подобного результата и ожидать-то не приходилось.
Рим, в котором жил Энрико Ферми, хранил воспоминания о своем величии, однако за десятилетия, предшествовавшие 1930-м, он все сильнее и сильнее отставал от остальной Европы. Лаборатория, которую правительство Италии выделило считавшемуся одним из ведущих европейских физиков Ферми, находилась на окраинной улочке, посреди большого парка. Потолки ее были плиточными, полки — мраморными, а за зданием лаборатории росли вокруг пруда с золотыми рыбками миндальные деревья. Для человека, желавшего удалиться от основного русла европейской мысли, место это было попросту идеальным.
В таком-то тихом уединении Ферми и обнаружил, что другие группы исследователей, стремившиеся обстреливать крошечное ядро обладавшими все большей и большей энергией нейтронами, дабы те смогли проникнуть в него, шли неверным путем. Забрасывая быстрыми нейтронами огромное пустое пространство атома, можно добиться лишь того, что они будут попросту проскакивать сквозь него. Хороший шанс попасть внутрь ядра имеют только нейтроны, подлетающие к нему так медленно, что они почти уж и не движутся. Медленные нейтроны ведут себя, как клейкие пули. А причина, по которой они словно бы липнут к ядру, состоит в том, что при относительно медленном движении нейтроны «размазываются» в пространстве. И даже если основное их тело пролетает мимо ядра, периферийные участки все еще сохраняют способность это ядро зацепить.