Эластичность. Гибкое мышление в эпоху перемен
Шрифт:
Некоторые смекалистые передовые программисты в «Гугле» пытаются усовершенствовать обычные компьютеры, ища способы имитировать работу нейронных систем человеческого мозга. Тамошние ученые построили машину, способную без помощи человека распознавать очертания, которые мы именуем котом [48] . Этот подвиг потребовал тысячи компьютеров, объединенных в сеть. Ребенок же справляется с этой задачей к своим трем годам, попутно жуя банан и размазывая арахисовую пасту по стенке.
48
Quoc Le et al., “Building High-Level Features Using Large Scale Unsupervised Learning”, в: Proceedings of the 29th International Conference on Machine Learning, сост. John Langford, Joelle Pineau (Мэдисон,
Это подводит нас к некоторым ключевым различиям в архитектуре мозга и цифровых компьютеров, что, в свою очередь, говорит кое-что важное о нас самих. В отличие от человеческого мозга, компьютер состоит из взаимосвязанных переключателей, в которых можно разобраться по коммутационным и логическим схемам, и работают они, следуя отчетливо определенному набору шагов (программе или алгоритму) линейно, в соответствии с задачей, имеющейся у программиста. Ученые из «Гугла», соединившие в нейронную сеть тысячу таких вот компьютеров, совершили впечатляющий подвиг, и это многообещающий подход. Но наши мозги способны на неизмеримо более грандиозные подвиги – на формирование нейронных сетей из миллиардов клеток, и каждая при этом связана с тысячей других. Из таких сетей складываются еще более масштабные структуры, а те в свою очередь – в еще более громадные, и далее, и далее, в сложнейшую иерархическую схему, которую ученые только-только начинают постигать.
Как я уже говорил, биологический мозг способен обрабатывать данные и сверху вниз, как это делает традиционный компьютер, и снизу вверх, что важно для эластичного мышления, – а также в некотором сочетании этих двух режимов. Как мы еще убедимся в Главе 4, процессы, происходящие снизу вверх, зарождаются из сложных и сравнительно «безнадзорных» взаимодействий миллионов нейронов и способны приводить к самым неожиданным свежим замыслам. Процессами же, происходящими снизу вверх, напротив, управляют исполнительные области мозга, и в этих процессах пошагово производится аналитическая мысль.
Наш исполнительный ум успешно подавляет мысли, возникающие невпопад. Но если мы решаем некую задачу и идем в неверном направлении, мысли невпопад – шаги не гуськом – как раз нам и нужны. Сэнфорд Пёрлисс, известный адвокат, рассказывает об одном случае, о котором он узнал еще в юридической школе [49] . Ответчик попал под суд за убийство своей жены. Косвенные улики были сильны, однако труп полиция так и не нашла. Составляя заключительное слово, адвокат сперва применил обычный подход, суммируя все показания, чтобы подогреть в присяжных разумное сомнение. Но логика оказалась бессильна: адвокат опасался, что никого убедить не сможет. И тут у него «откуда ни возьмись» возникла мысль.
49
Рассказал Сэнфорд Пёрлисс в выступлении на открытии: 2017 Perliss Law Symposium on Criminal Trial Practice, 1 апреля 2017 г.
Представ перед присяжными со своим заключительным словом, адвокат сделал громкое заявление: предположительная жертва найдена. Она здесь, в здании суда. Он попросил присяжных обратить взоры на вход в зал заседаний. С минуты на минуту она войдет и тем самым докажет невиновность ответчика. Предвкушая, присяжные повернулись к дверям в зал. Прошло несколько секунд, но никто не вошел. Тут адвокат с большой помпой произнес, что, к сожалению, женщина не нашлась – но раз присяжные все-таки согласились посмотреть, в глубине души у них имеются разумные сомнения, а потому им следует голосовать за оправдательный приговор. Блестящий пример того, как ум адвоката отступил от привычного последовательного подхода и двинулся по новому пути. К сожалению для подзащитного, адвокат не предупредил его об этой уловке. В результате ответчик, не имевший никаких сомнений, что его жена мертва, не повернулся вместе со всеми ко входу в зал. Прокурор в своей речи указал на это, и приговор прозвучал обвинительный.
Загадки пошаговым методом не решаются – и мир Гарри Поттера Дж. К. Роулинг изобрела не так, и Честер Карлсон придумал копировальную машину иначе. Именно безнадзорное мышление снизу вверх обеспечивает нам внезапные озарения и новые способы видеть ту или иную ситуацию и тем самым приводит к таким вот победам.
В Главе 4 мы еще вернемся к разнице между мышлением снизу вверх и сверху вниз, а также
3
Зачем мы думаем?
Желание и одержимость
В 1994 году Пэт Дарси [50] был сорок один год, когда она заметила странную боль у себя в правой руке [51] . Затем у нее развился небольшой тремор, после чего стало понятно, что это не просто хроническая мышечная боль. У нее диагностировали болезнь Паркинсона. Она возникает при отмирании нейронов в той части мозга, которая управляет движениями тела. Нам неизвестно, отчего нейроны отмирают, хотя в мертвых нейронах выявлено накопление определенного белка. Попадание в организм пестицидов увеличивает риск болезни Паркинсона, а вот курение, как ни парадоксально, уменьшает его.
50
Имя вымышлено. – Примеч. автора.
51
Eugenie Lhommdee et al., “Dopamine and the Biology of Creativity: Lessons from Parkinson’s Disease”, Frontiers in Neurology 5 (2014): 1–11.
У пациентов, страдающих этой болезнью, даже если они способны пожелать двинуть рукой или ногой, тело на эти желания не откликается. Бывает, у таких пациентов делается невнятной речь, нарушается равновесие, конечности теряют гибкость, в них может возникать боль или онемение – и они начинают трястись. Возвращать к жизни мертвые нейроны мы не умеем, как не умеем и заставить тело отращивать новые.
Отмирающие клетки – так называемые дофаминовые нейроны, клеточные фабрики по производству дофамина, далее используемого как нейромедиатор для передачи сигналов другим нервным клеткам. Дофаминовые нейроны располагаются в стволе мозга на верху позвоночника, в той части примитивного среднего мозга, какая именуется substantia nigra: она занята подбором физического действия – начала движения, например, – необходимого в ответ на те или иные внешние обстоятельства. Substantia nigra – это на латыни, и смотрится страсть как серьезно. На латыни и фраза «Сотрудники обязаны мыть руки» тоже показалась бы очень серьезной. Но пусть substantia nigra и кажется чем-то из папской речи на пасхальной мессе, значение у этих слов обыденное. Они означают «черное вещество», или «черная субстанция», и довольно точно описывают примерно все, что нам было о нем известно, когда его впервые обнаружили в 1791 году – и сотни полторы лет после этого. Ее темный цвет связан с избытком меланина в тех самых дофаминовых нейронах, которые портятся при болезни Паркинсона. Когда Пэт Дарси ощутила симптомы своей болезни, большинство тех нейронов уже, вероятно, поумирало.
Дофаминовые нейроны есть в относительно немногих областях мозга, а вот в черной субстанции их – изобилие. Для облегчения симптомов у Пэт ее невролог прописал ей агонист дофаминовых рецепторов – лекарство, имитирующее повышение уровня дофамина в мозге. С учетом наших скудных знаний болезни Паркинсона это едва ли не все, на что способна современная медицина, – попытаться скомпенсировать бездействие мертвых нейронов, помогая выжившим эффективнее передавать сигналы. Симптомы у Дарси облегчились.
Несколько лет жить ей было попроще. А затем Дарси начала менять свой образ жизни. Ей всегда нравилось рисовать, но тут она взялась за живопись, как ненормальная. «Я превратила свой дом в студию, повсюду у меня столы и холсты», – говорила она. Сделалась одержима, писала с утра до вечера, а нередко и ночью, использовала кучу кистей, губок и даже ножей с вилками. Она теперь писала не просто в свое удовольствие, а от неотвратимой нужды рисовать – так наркоман алчет своего вещества. «Я начала рисовать на стенах, на мебели, даже на стиральной машине, – рассказывала Дарси. – Я писала на любой подвернувшейся поверхности. А еще у меня имелась “стена самовыражения”, и я на ней рисовала и рисовала поверх того, что нарисовала, каждый вечер, будто в трансе, остановиться не могла».