Чтение онлайн

на главную - закладки

Жанры

Евклидово окно. История геометрии от параллельных прямых до гиперпространства
Шрифт:

Мысль об осуществлении операций с числами [3] доходила гораздо медленнее, поскольку занятия арифметикой подразумевают некоторую степень абстракции. Антропологи сообщают: если два охотника выпустили две стрелы, завалили двух газелей и заработали две грыжи, волоча добычу к стоянке, во многих племенах все эти «два» и «две» могли быть разными понятиями в каждом случае [4] . В таких цивилизациях нельзя было складывать яблоки с апельсинами. Похоже, на понимание того, что все это частные случаи одного и того же понятия — абстрактного числа 2, — потребовались тысячи лет.

3

Интересно о происхождении счета и арифметики у Уильямза, гл. 1.

4

Williams, стр. 3.

Первые серьезные шаги в этом постижении люди предприняли в шестом тысячелетии до н. э., когда жители долины Нила постепенно

отказались от кочевой жизни и принялись культивировать земли в долине [5] . Пустыни Северной Африки — едва ли не самые сухие и бесплодные в мире. И лишь река Нил [6] , набухая от экваториальных дождей и тающих снегов Абиссинского нагорья, могла принести, подобно богу, жизнь и пропитание в пустыню. В древние времена каждый год в середине июня сухая, безрадостная и пыльная долина Нила чуяла, как могучие воды устремляются в русло реки, занося плодородным илом округу. Задолго до греческого классика Геродота, описавшего Египет как «дар Нила», Рамзес III оставил запись, указывающую на то, как египтяне почитали этого бога, Нил: они называли его Хапи и подносили ему мед, вино, золото и бирюзу — все самое ценное. Само название страны — Египет — означает на коптском «черная земля» [7] .

5

R. G. W. Anderson, The British Museum (London: British Museum Press, 1997), стр. 16.

6

Pierre Montet, Eternal Egypt , trans. Doreen Weightman (New York: New American Library, 1964), стр. 1–8.

7

Pierre Montet, Eternal Egypt , trans. Doreen Weightman (New York: New American Library, 1964), стр. 1–8.

* * *

Ежегодное затопление долины продолжалось четыре месяца. К октябрю река начинала мелеть и чахнуть, пока земля к следующему лету не высыхала до корки. Восемь засушливых месяцев делились на два сезона: возделывания почв, перит, и сбора урожая, шему. У египтян возникли оседлые общины, располагавшиеся на холмах, которые в периоды затопления превращались в островки, соединенные дамбами. Египтяне создали систему орошения и хранения зерна. Сельское хозяйство стало основой египетского календаря и самой жизни, а его главными продуктами — хлеб и пиво. К 3500 году до н. э. египтяне развили кое-какое производство — ремесла и металлургию. Примерно тогда же они разработали и письменность [8] .

8

Georges Jean, Writing: The Story of Alphabets and Scripts, trans. Jenny Oates (New York: Harry N. Abrams, 1992), стр. 27.

Смерть для египтян всегда была неизбежностью, но с достатком и оседлостью неизбежными стали и налоги. Вероятно, именно они первыми потребовали развития геометрии [9] : хоть фараон и владел, в принципе, всеми землями и богатствами, на самом деле частная собственность была и у храмов, и у отдельных частных лиц. Власти оценивали размеры налогов по высоте подъема воды в текущем году и размерам частных владений. Тех, кто отказывался платить, тогдашняя полиция могла уговорить силой, не сходя с места. Займы существовали, но интерес закладывали по принципу «чем проще, тем лучше»: 100 % годовых [10] . Поскольку средства на кону стояли нешуточные, египтяне выработали более-менее надежные, хоть и мучительные методики расчетов площадей квадрата, прямоугольника и трапеции. Для вычисления площади круга его аппроксимировали квадратом со сторонами, равными восьми девятым диаметра. Это примерно то же самое, что 256/81 — или 3,16 — для значения числа , т. е. завышенная его оценка — правда, всего на 0,6 %. История не сохранила свидетельств, бурчали налогоплательщики по поводу такой несправедливости или нет.

9

Геродот писал, что развитие египетской геометрии стимулировали задачи налогообложения. См.: W. K. C. Guthrie, A History of Greek Phulosophy (Cambridge, UK: University Press, 1971), стр. 34–35, и Herbert Turnbull, The Great Mathematicians (New York: New York University Press, 1961), стр. 1.

10

Rosalie David, Handbook of Life in Ancient Egypt (New York: Facts on File, 1998), стр. 96.

Египтяне применяли свои математические знания с поразительным размахом. Вообразите открытую всем ветрам унылую пустыню в 2580 году до н. э. Архитектор разложил свои папирусы с планом заказанной вами постройки. У него-то работа непыльная: квадратное основание, треугольные грани, ну и да — 480 футов в высоту, из каменных глыб по две с лишним тонны каждая. Вам поручили проследить за строительством. Простите-извините, но никаких лазерных дальномеров и прочих затейливых маркшейдерских приборов нету — кое-какие палки да веревки.

Многие домовладельцы знают: разметка земли под фундамент здания или даже периметра под простенькую террасу при помощи лишь плотницкого угольника и рулетки — задачка непростая. При постройке же такой пирамиды малейшее отклонение от правильных углов — и тысячи тонн камней тысячи человеко-лет спустя в сотнях футов над землей примут форму не строгих треугольных граней пирамиды, сходящихся в одной точке, а шаткой четырехглавой кучи. А фараоны, коим поклонялись как богам, с армиями, резавшими фаллосы убитым врагам [11] просто для точности подсчетов, — совсем не те всесильные божества, которым стоит предъявлять кособокие пирамиды. Прикладная египетская геометрия развилась в полноценный предмет.

11

Эти и другие поразительные факты можно найти благодаря вкладу Алексея в эти примечания — вот где: James Putnam and Jeremy Pemberton, Amazing Facts about Ancient Egypt (London and New York: Thames & Hudson, 1995), стр. 46.

Чтобы строительство шло по плану, египтяне подключали специалиста, называвшегося гарпедонаптом, буквально — «натягивателем веревок». Возиться с веревкой гарпедонапт привлекал трех рабов. На ней с определенными интервалами были завязаны узлы, и если ее туго натянуть, получался треугольник с узлами-вершинами и сторонами известной длины — и, соответственно, углами нужного раствора. Например, если натянуть веревку с узлами на 30-м, 40-м и 50-м ярдах, между сторонами в 30 и 40 ярдов получится прямой угол. (Слово «гипотенуза» по-гречески исходно означала «растянутая напротив».) Метод, как выяснилось, блестящий — и куда сложнее, чем может показаться. В наше время сказали бы, что натягиватели веревок строили не линии, а геодезические кривые вдоль поверхности Земли. Нам предстоит убедиться, что именно этим методом — хоть и не в таком умозрительном виде и не в таких малых (бесконечно малых, говоря строго) масштабах — мы и поныне пользуемся для оценки локальных свойств пространства в той области математики, что зовется «дифференциальная геометрия». Именно теоремой Пифагора мы поверяем плоскость пространства.

Покуда египтяне обживали долину Нила, в районе Персидского залива и Палестины развивалась еще одна конурбация [12] . Все началось в Месопотамии — области между реками Тигр и Евфрат — в четвертом тысячелетии до н. э. Где-то в промежутке от 2000 до 1700 года до н. э. несемитские племена, обитавшие к северу от Персидского залива, завоевали своих южных соседей. Их победоносный владыка Хаммурапи назвал объединенное царство по имени своего города — Вавилона. Вавилонян мы и считаем [13] создателями математической системы, что гораздо сложнее египетской.

12

Хороший обзор вавилонской и шумерской математики см.: Edna E. Kramer, The Nature and Growth of Modern Mathematics (Princeton, NJ: Princeton University Press, 1981), стр. 2–12.

13

Для сравнения египетской и вавилонской математик см.: Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford University Press, 1972), стр. 11–22. См. Также: H. L. Resnikoff and R. O. Wells, Jr., Mathematics in Civilization (New York: Dover Publications, 1973), стр. 69–89.

Инопланетяне, глядящие на Землю в какой-нибудь сверхтелескоп с расстояния в 23 400 000 000 000 000 миль, и сегодня могут наблюдать жизнь и привычки вавилонян и египтян. Для нас же, застрявших на этой планете, собрать полную картину той жизни будет потруднее. О египетской математике мы знаем в основном из двух источников — из «Папируса Ринда», названного в честь Александра Г. Ринда [14] , передавшего этот документ в Британский музей, и из «Московского папируса», находящегося в Музее изобразительных искусств в Москве. Наши знания о вавилонянах происходят из раскопок руин в Ниневии, где обнаружили около 1500 табличек. К сожалению, ни на одной не нашлось математических текстов. Зато несколько сотен глиняных табличек удалось накопать в Ассирии — в основном на руинах Ниппура и Киша [15] . Если сравнивать археологические раскопки с поисками в книжном магазине, на сей раз отдел математики в нем обнаружился. Археологи нашли справочные таблицы, учебники и другие объекты, поведавшие многое о вавилонской математической мысли.

14

Также известен как «папирус Ахмеса»; Александр Генри Ринд (Райнд, 1833–1863) — шотландский юрист и египтолог. — Прим. пер.

15

Resnikoff and Wells, стр. 69.

Стало известно, к примеру, что функции вавилонского эквивалента инженера не сводились к мобилизации рабочей силы для стройки. Чтобы вырыть, допустим, канал, этот специалист размечал его трапециевидное сечение, рассчитывал объем земли, который необходимо вынуть, прикидывал, сколько один человек прокопает за день, и выдавал количество человекодней, необходимое для осуществления замысла. Вавилонские ростовщики умели даже вычислять сложный процент доходности [16] .

16

Kline, стр. 11.

Поделиться:
Популярные книги

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Курсант: Назад в СССР 4

Дамиров Рафаэль
4. Курсант
Фантастика:
попаданцы
альтернативная история
7.76
рейтинг книги
Курсант: Назад в СССР 4

С Новым Гадом

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
7.14
рейтинг книги
С Новым Гадом

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Приручитель женщин-монстров. Том 6

Дорничев Дмитрий
6. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 6

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Первый пользователь. Книга 3

Сластин Артем
3. Первый пользователь
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Первый пользователь. Книга 3

Назад в СССР: 1985 Книга 2

Гаусс Максим
2. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в СССР: 1985 Книга 2

В теле пацана 4

Павлов Игорь Васильевич
4. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 4