Евклидово окно. История геометрии от параллельных прямых до гиперпространства
Шрифт:
Вот зануда и привереда, а? Зачем уж так настаивать на доказательстве малейшего утверждения? Математика — вертикальное сооружение, которое, в отличие от архитектурной постройки, рухнет, если хоть один математический кирпичик окажется битым. Допусти в системе невиннейшую погрешность — и пиши пропало, в ней уже ничему нельзя доверять. По сути, теорема логики утверждает: [50] если в систему вкралась хоть одна ложная теорема — неважно, о чем она, — этого будет достаточно для доказательства, что 1 = 2. Говорят, однажды некий скептик припер к стенке логика Бертрана Расселла, желая возразить против этой уничтожающей теоремы (хотя в итоге говорил об обратном). «Вот что, — рявкнул усомнившийся, — допустим, один равно два, докажите, что вы — Папа Римский». Расселл, по свидетельствам, задумался на миг, после чего ответил: «Папа и я — двое, следовательно, Папа и я — одно».
50
Kline, стр. 1205.
Доказательство каждого
Давным-давно была такая телевизионная программа «Поспорим» [51] . Участника помещали напротив трех подиумов, скрытых занавесами. На одном подиуме находился какой-нибудь ценный объект — автомашина, к примеру, а на двух других — какая-нибудь ерунда, утешительный приз. Допустим, участник выбирал второй подиум. Ведущий затем открывал один из двух оставшихся занавесов, скажем — третий. За ним, положим, находится утешительный приз, следовательно, настоящий приз — либо за первым занавесом, либо за вторым, который участник выбрал изначально. Ведущий далее спрашивает участника, станет ли он менять свой выбор — т. е. выберет ли теперь первый занавес. Вы бы изменили решение? Интуитивно кажется, что вероятность выигрыша — пятьдесят на пятьдесят, хоть так, хоть эдак. Оно было бы так, если бы у нас не было никаких предварительных вводных, но они у нас есть: предыдущий выбор и действия ведущего в этой связи. Внимательный анализ вероятностей, начиная с исходного выбора и далее, или применение нужной формулы, называемой теоремой Байеса (Бейза) [52] , показали бы, что шансов больше, если выбор изменить. Таких примеров в математике — когда интуиция подводит нас, а выручает лишь произвольная формальная логика, — навалом.
51
«Let’s Make A Deal» — американская телевикторина телеканала «Эн-би-си», транслировавшаяся с 1963 по 1968 гг. — Прим. пер.
52
Трудный выбор, на котором основана программа «Поспорим», часто называют задачей Монти Холла, по имени ведущего программы. Проще всего разобраться в решении, нарисовав диаграмму-дерево, последовательно иллюстрирующую возможные варианты выбора. Этот метод применяется для наглядного описания теоремы Байеса в: John Freund, Mathematical Statistics (Englewood, Cliffs, NJ: Prentice-Hall, 1971), стр. 57–63. (Здесь и далее по тексту в квадратных скобках имена собственные даются в соответствии с произносительной нормой в тех случаях, когда она расходится с привычным написанием. — Прим. пер.)
Точность — еще одно свойство, необходимое математическому доказательству. Наблюдатель может измерить диагональ квадрата с единичной стороной и получить результат 1,4, а с более точными приборами — 1,41 или даже 1,414, и как бы нам ни хотелось принять подобное приближение как достаточное, оно не даст нам получить эпохальное прозрение: это значение длины — величина иррациональная.
Крошечные количественные изменения могут иметь громадные качественные последствия. Вспомним государственные лотереи. Не теряющие надежду неудачники частенько пожимают плечами и говорят: «Не сыграешь — не выиграешь». Это правда, не поспоришь. Но правда и то, что шансы на выигрыш у тех, кто покупает лотерейный билет, и у тех, кто нет, отличаются на малюсенькую долю процента. Что произойдет, если лотерейная комиссия за явит, что решила округлить ваши шансы на выигрыш с 0,000001 % до нуля? Изменение почти неприметное, но поток наличности от продаж оно изменит еще как.
Фокус Пола Карри
Трюк, изобретенный фокусником-любителем Полом Карри [53] (см. предыдущую страницу), жившим в Нью-Йорке, — отличный геометрический пример. Возьмем квадратный лист бумаги и нарисуем на нем сетку из меньших квадратов семь на семь. Разрежем лист на пять частей и переложим их так, как показано на рисунке. В результате получим «квадратный пончик» — квадрат того же размера, что и исходный, однако по центру не будет хватать одного квадратика. Куда подевался этот квадратик? Мы что же, доказали теорему о том, что цельный квадрат равен по площади пончику?
53
Martin Gardner, Entertaining Mathematical Puzzles (New York: Dover Publications, 1961), стр. 43. (На рус. яз.: Гарднер М., «Математические досуги», М: «Мир», 1972, пер. Ю. Данилова. — Прим. пер.)
Фокус состоит в том, что при пересборке квадрата фрагменты ложатся чуточку внахлест, и фигура в результате получается слегка жульнической — или, скажем так, приблизительной. Второй сверху ряд клеток получается чуть-чуть выше, а весь квадрат — на 1/49 длиннее по вертикали, чем должен быть, и этого как раз достаточно, чтобы набралась площадь недостающего квадратика. Но если бы нам доступно было измерение длин с точностью лишь до 2 %, мы бы не уловили разницу между этими двумя фигурами и впали бы в искушение сделать мистический вывод, что площади квадрата и «квадратного пончика» равны друг другу.
Учтены ли как-то подобные малые расхождения в теориях пространства? Одной из путеводных идей в создании общей теории относительности, гениальной теории об искривлении пространства, послужило Альберту Эйнштейну именно отклонение перигелия Меркурия от классической ньютоновской теории [54] . Согласно теории Ньютона, планеты движутся по идеальным эллиптическим орбитам. Точка, в которой планета ближе всего к Солнцу, называется перигелием, и, если теория Ньютона верна, планета должна ежегодно проходить строго через эту точку. В 1859 году в Париже Урбен Жан Жозеф Леверье сообщил, что перигелий Меркурия постоянно смещается — самую малость, всего 38 секунд в столетие, что, конечно же, никаких практических последствий не имеет. И тем не менее такое отклонение почему-то происходит. Леверье назвал это «чудовищным затруднением, достойным внимания астрономов». К 1915 году Эйнштейн достаточно развил свою теорию — и вычислил орбиту Меркурия; в эти расчеты обнаруженное отклонение вполне вписалось. По словам биографа Эйнштейна Абрахама Пайса, это открытие стало «высшей точкой его научной жизни. Он был так взбудоражен, что три дня не мог работать». Каким бы малым ни было это отклонение, его объяснение привело к падению классической физики.
54
История про трудности с перигелием Меркурия изложена в: John Earman, Michael Janssen, and John D. Norton, eds., The Attraction of Gravitation: New Studies in the History of General Relativity (Boston: The Center for Einstein Studies, 1993), стр. 129–149. А еще есть хорошее, хоть и краткое, изложение этой же темы в: Abraham Pais, Subtle Is The Lord (Oxford: Oxford University Press, 1982), стр. 22, 253–255; цитата Леверье дана на стр. 254; «высшая точка» — на стр. 22. Геометрия всей этой истории изложена в: Resnikoff and Wells, стр. 334–336.
Целью Евклида было построить систему так, чтобы в ней не оставалось места для нечаянных допущений, основанных на интуиции, угадывании или приблизительности. Он ввел двадцать три определения [55] , пять геометрических постулатов и пять дополнительных постулатов, которые он назвал «Общими утверждениями». На этом фундаменте он доказал 465 теорем — практически все геометрическое знание его времени.
Евклид дал определения точке, линии (которая, согласно определению, может быть искривленной), прямой линии, окружности, прямому углу, поверхности и плоскости. Некоторые понятия он определил довольно точно. «Параллельные прямые, — писал он, — это прямые линии, которые, находясь на одной плоскости, продолженные до бесконечности в обоих направлениях, ни в одном из этих направлений не пересекаются».
55
Три хороших современных обзора «Начал» Евклида есть в: Kline, Mathematical Thought , стр. 56–88; Jeremy Gray, Ideas of Space (Oxford: Clarendon Press, 1989), стр. 26–41; Marvin Greenberg, Euclidean and Non-Euclidean Geometries (San Francisco: W. H. Freeman & Co., 1974), стр. 1–113.
Окружность, по словам Евклида, есть «плоская фигура, обозначенная одной линией (кривой) так, что все прямые линии, пересекающие ее и еще одну из точек внутри ее, называемую центром, равны друг другу». О прямом угле сказано так: «Когда прямая линия пересекает другую прямую линию, а образующиеся соседние углы равны друг другу, любой из этих углов — прямой».
Некоторые другие Евклидовы определения — например, точки или прямой — довольно расплывчаты и бесполезны: прямая — это «та, что лежит равномерно на всех точках, что на ней помещены». Это определение, вероятно, возникло из строительной практики — там прямоту линий проверяли, глядя из некой точки вдоль проверяемой прямой. Чтобы вникнуть в это определение, нужно загодя иметь в уме понятие прямой. Точка есть «то, у чего нет частей» — еще одно определение, граничащие с бессмыслицей.
Евклидовы общие утверждения более элегантны. Эти внегеометрические логические утверждения [56] , судя по всему, Евклид считал проявлениями бытового здравого смысла — в отличие от постулатов, что были вполне геометричны. Эту разницу обозначил ранее еще Аристотель. Всесторонне взвесив эти интуитивные допущения, Евклид, по сути, добавил их к постулатам, однако явно желал отличать их от чисто геометрических утверждений. Одно то, что Евклид счел необходимым вообще эти утверждения предъявить, указывает на глубину мысли:
56
Kline, стр. 59.