Эволюция разума
Шрифт:
Эти образы букв соединяются в образ еще более высокого порядка, относящийся к категории слов (в нашем с вами языке — для новой коры это лишь образ определенного порядка): APPLE.
В другой части коры имеет место аналогичная иерархия распознающих модулей, участвующих в обработке образов реальных объектов (а не печатных букв). Если вы смотрите на настоящее яблоко, модули низшего уровня находят округлые формы и образы цвета кожицы, в результате чего происходит возбуждение соответствующего аксона и подается знак: «Эй, ребята, я увидел настоящее яблоко!» Возбуждение
Опять же, помним об избыточности модулей — мы имеем не по одному распознающему модулю для каждого вида яблока (увиденного или услышанного слова «яблоко» и реального яблока). Скорее всего, происходит возбуждение сотен таких модулей, если не больше. Избыточность не только повышает вероятность успешного узнавания всех форм яблока, но и помогает распознавать варианты настоящих яблок. Существуют распознающие модули для узнавания самых разных видов яблок — всех сортов, цветов и форм.
Кроме того, не забываем о том, что описанная выше иерархия является иерархией понятий. Распознающие элементы на самом деле не выстраиваются каким-либо иерархическим образом относительно друг друга; новая кора тонкая и по высоте равна лишь одному распознающему элементу. Концептуальная иерархия создается за счет взаимодействий между отдельными распознающими элементами.
Важным элементом теории мысленного распознавания образов является описание процесса распознавания в каждом распознающем модуле. В модель заложен параметр «веса» входного сигнала каждого дендрита; этот параметр определяет важность данного сигнала для распознавания. Модули характеризуются пороговым значением возбуждения (преодоление этого значения говорит о том, что сигнал успешно узнается соответствующим распознающим модулем). Для возбуждения распознающего модуля не обязательно нужны все входные сигналы. Модуль может возбуждаться, например, при отсутствии входного сигнала с малым весом, но при отсутствии важного сигнала возбуждение вряд ли возможно. Возбуждение распознающего модуля обычно означает следующее: «Образ, за узнавание которого я отвечаю, скорее всего, присутствует».
Однако успешное распознавание модулем соответствующего образа заключается не только в подсчете входных сигналов (и в учете параметра их значимости). Важна также величина сигнала. Каждый входной сигнал, кроме того, описывается параметром, указывающим ожидаемую величину сигнала, и параметром, учитывающим вариабельность этой величины. В качестве примера рассмотрим распознающий модуль, ответственный за узнавание в речи слова steep (произносится «стиип» — «крутой», «высокий»). Слово состоит из четырех звуков: [s], [t] [e] и [p]. Звук [t] относится к так называемым зубным согласным; это означает, что звук производится воздухом, нарушающим контакт между языком и верхними зубами. Звук [t] практически невозможно произносить медленно. Глухой звук [p] относится к «взрывным согласным»; он образуется при открытии блокированного голосового тракта (перекрытого губами в случае [p]). Это тоже быстрый звук. Гласный звук [e] образуется за счет резонанса голосовых связок при открытом рте. Он относится к долгим гласным звукам, то есть длится гораздо дольше, чем согласные [t] и [p], однако его длительность может изменяться в широких пределах. Звук [s] относится к свистящим согласным; он возникает при прохождении воздуха через щель между сжатыми зубами. Его длительность обычно меньше, чем у долгих гласных звуков, таких как [e], но тоже может изменяться (звук [s] можно произнести быстро, а можно протянуть).
В нашей работе по распознаванию речи мы установили, что для распознавания звуковых образов этот тип информации должен быть закодирован. Например, слова steep и step (произносится «стэп» — «шаг», «этап») достаточно похожи. Хотя звуки [e] в слове step
Эту информацию можно закодировать с помощью двух параметров — ожидаемой величины (в данном случае длительности) и степени ее вариабельности. В нашем примере звуки [t] и [p] в слове steep характеризуются очень малой ожидаемой длительностью и малой вариабельностью (это означает, что мы не ожидаем услышать долгих звуков [t] и [p]). Звук [s] характеризуется малой ожидаемой длительностью, но большей вариабельностью, поскольку этот звук можно протянуть. Наконец, звук [e] имеет большую ожидаемую длительность и высокую степень вариабельности.
В этом примере величина — это длительность, но длительность — лишь одна из нескольких возможных характеристик величины сигнала. В нашей работе по распознаванию знаков мы обнаружили, что для распознавания печатных букв важна соответствующая пространственная информация (например, ожидается, что точка над i будет значительно меньше палочки). На более высоком понятийном уровне новая кора имеет дело с самыми разными совокупностями информации, такими как уровень притягательности, иронии, удовольствия, расстройства, и множеством других. Мы можем найти сходство между еще более различающимися совокупностями, чем Дарвин, который связал размер геологических разломов с различиями между видами организмов.
Источником данных параметров для головного мозга является собственный опыт мозга. Когда мы родились, мы ничего не знали о фонемах (звуковых единицах языка), кроме того, разные языки очень сильно различаются по фонетическим характеристикам. Это означает, что многочисленные примеры образа записываются в виде параметров для каждого распознающего модуля (поскольку ожидаемое распределение величин входных сигналов определяется в результате множества экспозиций). В некоторых программах искусственного интеллекта такие параметры кодируются экспертами (например, лингвисты могут назвать ожидаемую длительность различных фонем). В ходе наших исследований мы поняли, что лучше заставить программу самостоятельно определить параметры на основе тренировочных данных (примерно так, как это делает мозг). Иногда мы использовали смешанный подход, то есть снабжали систему человеческой интуицией (для начальных установок параметров), а затем заставляли ее уточнить эти оценки путем обучения на реальных речевых примерах.
Что же делает распознающий модуль? Он вычисляет вероятность (основанную на предыдущем опыте) того, что тот образ, за распознавание которого он отвечает, действительно представлен активными входными сигналами. Каждый поступающий на модуль сигнал активен в том случае, если возбужден соответствующий распознающий модуль более низкого порядка (это означает, что произошло распознавание образа более низкого порядка). Каждый входной сигнал также кодирует наблюдаемую величину сигнала (в подходящем измерении — в единицах времени, каких-то физических величин или иных параметров), так что эти величины сравниваются модулем с соответствующими величинами предыдущих сигналов для расчета вероятности того, что это «правильный» образ.
Как мозг (и система искусственного интеллекта) рассчитывает общую вероятность присутствия образа (за распознавание которого отвечает соответствующий модуль) на основании: 1) входных сигналов (определенной величины), 2) предыдущих параметров величины (ожидаемая величина и ее вариабельность) каждого сигнала и 3) значимости каждого сигнала? Для определения этих параметров и их использования для изучения иерархии образов в 1980-х и 1990-х гг. я и некоторые другие ученые предложили математический метод, называемый методом скрытых моделей Маркова. Мы применили этот подход для распознавания и понимания человеческой речи. Я опишу его и седьмой главе.