Чтение онлайн

на главную

Жанры

Эволюция Вселенной и происхождение жизни
Шрифт:

Рис. 18.3. В первых ускорителях частиц умножитель напряжения Кокрофта-Уолтона создавал необходимый перепад напряжения. Здесь показано такое устройство, созданное в 1937 году фирмой «Филипс» и сейчас хранящееся в Национальном музее науки в Лондоне.

В начале 1950-х годов циклотрон получил дальнейшее развитие в виде синхротрона, в котором энергия столкновений превзошла 1000 МэВ (это 1 ГэВ, гигаэлетронвольт). Сейчас самый мощный ускоритель находится в Европейском центре ядерных исследований (ЦЕРН) в Женеве. К тому же в ЦЕРНе заканчивается строительство нового коллайдера (ускоритель на встречных

пучках) — Большого адронного коллайдера (БАК), занимающего круговой туннель длиной 27 км. Этот туннель находится на глубине около 100 метров между Женевским аэропортом и ближайшими Юрскими горами. Прежде чем попасть в это огромное кольцо, частицы будут ускоряться поэтапно, каждый раз увеличивая свою скорость и энергию: предварительные стадии включают в себя линейный ускоритель, бустер, протонный синхротрон и протонный суперсинхротрон. В главном круговом ускорителе, двигаясь в противоположных направлениях по двум трубам, протоны будут разгоняться до скорости в 0,99 999 999 от скорости света! БАК будет сталкивать протоны с энергией 7 ТэВ (ТэВ = 1000 ГэВ) каждый, с полной энергией столкновения 14 ТэВ. Каждый протон будет обладать кинетической энергией летящего комара — для протона это гигантская энергия! При таких энергиях, в миллионы раз превышающих те, которые достигал Лоуренс, могут рождаться частицы совершенно нового типа (рис. 18.5).

Рис. 18.4. Схема работы циклотрона из патента Лоуренса 1934 года.

В 1932 году частицы детектировались с помощью камеры Вильсона, заполненной водяным паром в сверхкритическом состоянии, так что капельки воды конденсировались вдоль траекторий заряженных частиц. С помощью фотографии можно было обнаружить траекторию заряженной частицы, которая только что пролетела сквозь камеру. Магнитное поле в камере меняло направление траектории: определив, насколько сильно и в каком направлении искривилась траектория, можно было отождествить частицу. В 1950-е годы стал использоваться более совершенный детектор — пузырьковая камера. В ней траектории частиц представлены в виде четких линий из пузырьков в жидкости. Их можно сфотографировать с разных направлений и проанализировать. Сейчас применяется много новых высокоавтоматизированных методов детектирования.

Четвертое крупное открытие в 1932 году сделал Карл Андерсон (1905–1991), изучавший траектории космических лучей в камере Вильсона. Среди прочих частичек американский физик нашел одну, траектория которой была в точности как у электрона, но в магнитном поле она отклонялась в другом направлении, то есть частица имела положительный заряд (рис. 18.6). Андерсон многими способами проверил этот удивительный результат и затем опубликовал его. Так был открыт позитрон.

Рис. 18.5. Компоненты Большого адронного коллайдера в ЦЕРНе. Несколько последовательных систем постепенно ускоряют протоны до высоких скоростей. В туннеле коллайдера находятся крупные детекторы для регистрации взаимодействия пучков протонов, летящих по кругу навстречу друг другу (рис. с домашней страницы ЦЕРН: http://public.web.cern.di/Public ).

Андерсон не знал, что английский физик Поль Дирак (1902–1984) много лет назад предсказал существование позитрона. Не только электрон, но и другие элементарные частицы должны иметь двойников с противоположным зарядом. Такие двойники называются античастицами. Наряду с электроном, протон должен иметь свою античастицу. В принципе, должен существовать целый «антимир», в котором атомные ядра имеют отрицательно заряженные антипротоны, а вокруг ядра обращается облако положительно заряженных позитронов. Все химические реакции должны проходить там так же, как в нашем мире.

Антивещество, состоящее из античастиц, не существует в значительных количествах. Это легко понять: вещество и антивещество не могут мирно сосуществовать. Когда встречаются электрон и позитрон, они уничтожают друг друга, превращаясь в гамма-излучение. Точно так же уничтожают друг друга протоны и антипротоны (которые были обнаружены в 1955 году). Поскольку каждая частица должна иметь свою античастицу, список известных частиц сразу стал вдвое длиннее. Благодаря открытиям необычного 1932 года, Чедвик, Андерсон, Юри, Лоуренс, Кокрофт и Уолтон стали лауреатами Нобелевской премии 1934 и 1951 годов.

Рис. 18.6. Гамма-квант проникает в пузырьковую камеру сверху и рождает пару электрон-позитрон. Под действием магнитного поля орбита позитрона заворачивает налево, а орбита электрона — направо. Из той же точки выходит траектория еще одного электрона, более быстрого. Ниже видно рождение еще одной электрон-позитронной пары. Рисунок основан на фотографии, полученной пузырьковой камерой Лоуренсовской лаборатории в Беркли.

Кварк: самая элементарная частица?

Некоторое время протоны и электроны считались настоящими неделимыми «атомами». Но оказалось, что природа не настолько проста. По мере увеличения мощности ускорителей росло и число обнаруженных элементарных частиц. Как и столетие назад в случае с химическими элементами, в ряду элементарных частиц тоже наметилась некоторая систематика. Частицы делятся на три основных группы: лептоны, адроны и фотоны. Лептоны не чувствуют сильного ядерного взаимодействия, и размер их настолько мал, что во всех проведенных до сих пор экспериментах со столкновениями они вели себя как точечные массы («лепто» по-гречески означает «маленький»). К лептонам относятся электрон, мюон и тау-лептон (тауон). Последний был открыт в 1977 году. Хотя он в 3500 раз тяжелее электрона, он входит в состав лептонов из-за других своих характеристик. Кроме этих трех частиц, к лептонам относят и три типа соответствующих им нейтрино, которые увеличивают число известных лептонов до шести; а если к этому прибавить и античастицы, то число лептонов увеличится до 12.

Адроны чувствуют сильное ядерное взаимодействие. К ним относятся ядерные частицы (протоны и нейтроны) с их родственниками, называемые барионами, а также «вестники» ядерного взаимодействия, пионы с их родственниками, называемые мезонами. В 1960-е годы стало ясно, что адроны не являются истинно элементарными частицами, а состоят из более мелких частей — кварков. Когда протоны и нейтроны бомбардируются электронами и мюонами, они ведут себя как если бы они в основном были пустыми, за исключением нескольких точечных центров (похоже на эксперимент Резерфорда!) Диаметр протона около 10 – 12мм; это как раз та область, где движется кварк. Сам кварк намного меньше; вероятно, он точечный.

Начиная с 1950-х годов Мюррей Гелл-Манн стал искать порядок среди элементарных частиц и, как и Менделеев до него, обнаружил закономерности и предсказал новые частицы. Гелл-Манн и Джордж Цвейг — оба из Калифорнийского технологического института — в 1964 году независимо друг от друга предположили, что протон и нейтрон состоят из трех кварков. Вообще-то вначале на кварки смотрели как на удобный математический прием для проведения вычислений в сложной физике элементарных частиц. Идея кварков не получила широкого одобрения, поскольку сами кварки не были найдены.

Казалось бы, заметить кварки было несложно, ведь они обладают дробным электрическим зарядом. Самые важные кварки — это верхний кварк (up quark) с электрическим зарядом +2/3 и нижний кварк (down quark) с зарядом -1/3 (как обычно, заряд электрона в этих единицах равен -1). Но в пузырьковой камере не видно никаких дробных зарядов: все частицы имеют либо заряд электрона, либо кратный ему заряд. Тем не менее твердые ядра внутри протона и нейтрона хорошо согласуются с теорией кварков; похоже, что по крайней мере там кварки существуют. Сейчас считается, что кварки прочно связаны в ядерных частицах. В отличие от других частиц, кварки не могут существовать по отдельности: им требуется один или два партнера.

Поделиться:
Популярные книги

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Совок 4

Агарев Вадим
4. Совок
Фантастика:
попаданцы
альтернативная история
6.29
рейтинг книги
Совок 4

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Я князь. Книга XVIII

Дрейк Сириус
18. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я князь. Книга XVIII

Жандарм 5

Семин Никита
5. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 5

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Аномальный наследник. Том 1 и Том 2

Тарс Элиан
1. Аномальный наследник
Фантастика:
боевая фантастика
альтернативная история
8.50
рейтинг книги
Аномальный наследник. Том 1 и Том 2