Эволюция Вселенной и происхождение жизни
Шрифт:
Итак, вы бегло познакомились с некоторыми сложными областями физики и получили представление о том, какие идеи вдохновляют современных физиков. «Многомерное пространство» звучит фантастически, но нужно помнить, что корни современной супергравитации и теории струн уходят в 1910-е годы, когда рождалась общая теория относительности.
Микрокосмос связан с очень малыми размерами. Диаметр протона равен примерно 10 – 12мм, но он чудовищно велик по сравнению с пространственным масштабом 10 – 31мм, присутствующим в теории супергравитации. А если мы поднимем взгляд к небу, то придется в степенях десятки заменить знак
ЧАСТЬ III ВСЕЛЕННАЯ
Глава 19 Звезды: космические термоядерные реакторы
Теперь, овладев тайнами микромира элементарных частиц, мы можем вернуться к Большой Вселенной. Для начала обратимся к наиболее распространенным космическим объектам — звездам. Наше Солнце — типичная звезда; изучая Солнце, мы можем узнать многое о звездах. Но существуют разные типы звезд, и некоторые из них очень сильно отличаются от Солнца. Впрочем, именно эти различия помогают нам понять структуру звезд и физические процессы, определяющие их жизненный цикл. Начнем со спектров их излучения.
В спектрах звезд часто видны линии водорода. Их интенсивность можно использовать для классификации звезд. В 1863 году иезуит отец Анджело Секки из Ватиканской обсерватории разделил звезды на четыре спектральных класса, став, таким образом, пионером астрономической спектроскопии. В 1886 году в США, в обсерватории Гарвардского колледжа, Эдуард Пикеринг (1846–1919) начал спектроскопический проект, затянувшийся на десятилетия. Для этой работы перед объективом телескопа установили призму и фотографировали небо. При этом одновременно получались спектры всех звезд, попавших в поле зрения телескопа. Были получены спектры тысяч звезд, большинство из которых отличались от спектра Солнца.
Основываясь на этом уникальном материале, сотрудницы Гарварда, среди которых выделялась Энни Джамп Кэннон (1863–1941), разработали систему спектральной классификации, которой пользуются и в наше время. Сама Кэннон исследовала и классифицировала более 250 000 спектров! В исходной системе, имеющей в основе латинский алфавит, звезде приписывался класс А, если линии Бальмера в спектре были особенно сильны. Немного более слабые бальмеровские линии определяли звезду в класс В и т. д. Если эти линии оказывались настолько слабы, что замечались с трудом, звезде приписывался класс M или даже О.
Легко заметить, что звезды имеют разный цвет. Бетельгейзе в Орионе явно красная, а наблюдаемый невдалеке от нее Сириус сияет голубым светом. Довольно быстро выяснилось, что спектральный класс и цвет звезды связаны друг с другом. Это привело к изменению системы классификации. Если расположить звезды в соответствии с их цветом, то спектральные классы О, В и А окажутся у более голубых, а классы К и M — у красных звезд. Желтое Солнце имеет спектральный класс G. Некоторые буквы алфавита выпали из списка. В итоге гарвардская система стала такой: О, В, A, F, G, К, M. Многие поколения студентов запоминают эту последовательность с помощью мнемонической фразы О, Be A Fine Girl, Kiss Me (Врезка 19.1 и рис. 19.1).
а Глаз различает цвет звезды, только если она достаточно яркая.
в Некоторые характерные спектральные линии.
Цвет звезды очень важен: он говорит о температуре ее поверхности. Как мы уже знаем, горячее твердое тело или плотный газ излучают свет всех длин волн, или всех цветов — от фиолетового до красного, но пик цветового излучения зависит от степени нагрева тела. Если мы нагреваем кусок железа, вначале он достигает красного каления (с пиком на длинных волнах). При повышении температуры пик цвета становится желтоватым. У очень горячих тел пик излучения приходится на короткие волны, а наш глаз воспринимает цвет такого объекта как бело-голубой.
Рис. 19.1. Спектры звезд, расставленные в соответствии с температурой их поверхности. Указаны спектральные линии некоторых элементов и соединений. Звездные спектральные классы делятся на подклассы, обозначенные цифрой, следующей за буквой, указывающей спектральный класс звезды. Обратите внимание на постепенное изменение интенсивности бальмеровских линий водорода (H, Н и т. д.) в звездах разных спектральных классов — от горячих к холодным звездам. У звезд типа Солнца (класс G) бальмеровские линии довольно слабые.
Самыми горячими среди звезд являются О-звезды; температура их поверхности может превышать 25 000 °C. На другом конце этой шкалы находятся M-звезды: они могут быть холоднее 3200 °C. Свет от звезды класса О в основном голубой, но не чистый. В свете звезды содержатся все цвета, но в разной пропорции: у звезд класса О доминирует голубой конец спектра, а у M-звезд перевешивает красный цвет. Практически спектры звезд ведут себя так же, как спектр абсолютно черного тела. Поэтому для классификации звезды мы можем использовать только один параметр — температуру поверхности. Впрочем, этого еще недостаточно для описания всех звезд.
Мы знаем, что звезды в основном состоят из водорода. Но это не всегда было очевидно: сто лет назад считалось, что Солнце в основном состоит из железа. За прорыв в исследовании строения звезды мы должны благодарить Сесилию Пейн-Гапошкину (1900–1979). Она была урожденной Сесилией Пейн из Англии, а в 1934 году вышла замуж за Сергея Гапошкина. Защищенная ею в 1925 году в Рэдклифском колледже Гарвардского университета диссертация считается одной из лучших в астрономии XX века. Не теряя мужества и работая на непрестижных и низкооплачиваемых должностях, она стала первой женщиной, избранной профессором в Гарварде. В своей диссертации она доказала, что сильные вариации интенсивности линий в спектрах звезд в основном вызваны не различием их химического состава, а различием температуры поверхности.
С учетом температурных эффектов можно определить химический состав звезд и увидеть, что водород, несомненно, самый распространенный элемент; за ним следует гелий, которого намного меньше, и совсем мало остальных элементов. Такой «космический состав» типичен для звезд и совершенно не похож на состав Земли. Это стало великим открытием.
В конце XIX века обсуждались два альтернативных взгляда на эволюцию звезд. Согласно одной точке зрения, звезды рождаются горячими и голубыми, а затем, в процессе эволюции, постепенно остывают и краснеют. Другая идея заключалась в том, что в начале своей жизни звезды большие и красные, а затем они постепенно сжимаются, становясь горячее и голубее.