Чтение онлайн

на главную

Жанры

Финансовая грамотность, или Основы управления личными финансами
Шрифт:

Если считать что люди ведут себя как рациональные агенты, тогда должна работать так называемая «теория ожидаемой полезности» – формула, которая может использоваться рациональным игроком при принятии решений. Здесь предполагается, что каждый стремиться максимизировать благо (в терминах азартной игры – выигрыш).

Но многое говорит о том, что поведение людей скорее не рациональное, а иррациональное. И даже более того, наше иррациональное поведение не является случайным или бессмысленным, а является систематическим и предсказуемым (подробно описывается в теории перспектив, о которой поговорим далее).

Например, если предложить человеку сыграть в игру и дать два варианта на выбор:

1) Возможность получить 5 тыс.

руб. с вероятностью 0,5 %;

2) Возможность получить 100 руб. с вероятностью 100 %.

Большинство людей, при таких условиях, выбирает второй вариант – с меньшим риском, но и с меньшим математическим ожиданием. В первом варианте математическое ожидание равно 250 руб. (5,000 x 0,5 %). Во втором варианте математическое ожидание равно 100 руб.

Для описания поведения, при котором люди предпочитают гарантированную выплату (не смотря на её меньшее математическое ожидание) была придумана формула ожидаемой полезности как инструмент анализа выбора в условиях риска. В 1944 году вышла монография Джона фон Неймана [23] и Оскара Моргенштерна «Теория игр и экономическое поведение», в которой авторы обобщили и развили результаты теории игр и предложили новый метод для оценки полезности благ. Они показали, что в условиях неполной информации рациональным выбором человека будет выбор варианта с максимальной ожидаемой полезностью. Не смотря на то, что концепция Неймана-Моргенштерна вдохнула новую жизнь в концепцию кардиналистской полезности, она далеко не всегда может объяснить поведение людей.

23

Джон фон Нейман наиболее известен большинству людей как человек, с именем которого связывают архитектуру большинства современных компьютеров.

Рассмотрим другой пример. Вам предлагают сыграть в следующую игру. В закрытой коробке находится 99 белых шариков и 1 чёрный шарик. Вам нужно в слепую вытащить один шарик. Если вы вытяните белый – то вы потеряете всё то, что имеете. А если вытяните чёрный шарик – получите от организаторов 1 млрд. долларов. Допустим, у вас есть в собственности квартира, автомобиль и другие ценности общей стоимостью 100 тыс. долларов, что и будет, является величиной потенциального проигрыша.

По математики игра чрезвычайно выгодная для вас (математическое ожидание выигрыша будет 10 млн. долларов = 1 млрд. * 0,01). С вероятностью 0,01 можно выиграть 1 млрд. долларов. Но в данном конкретном случае, подавляющее большинство людей всё же откажется от участия в такой игре (хотя при этом будут продолжать покупать лотерейные билеты с гораздо меньшей вероятностью выиграть гораздо меньший потенциальный выигрыш).

На этом примере становится понятным, что даже лишь при двух исходах и с огромным средним выигрышем «рациональное» поведение людей не гарантированно. Без всякой математики условия данной игры для большинства людей кажутся неприемлемыми.

Поэтому приходится допустить, что рациональное поведение не есть простое стремление к максимизации блага (выигрыша).

Такое поведение людей, можно частично разрешить, если в качестве гипотезы принять, что когда мы говорим о бесконечном ряде стоимостных величин, потенциальный участник игры оценивает не столько сумму выигрыша, сколько ожидаемую полезность выигрыша. Полезность (ценность) ожидаемого рубля будет всегда ниже полезности предшествующего. Вот представьте, что вы заработали свой первый миллион рублей (или долларов, или евро – не суть). Полезность первого миллиона для вас самая максимальная. Затем появляется второй, третий, … десятый, двадцатый, … сотый и т. д. По мере насыщения полезность каждого последующего миллиона снижается (первый закон Госсена в действии). Кстати, отсюда напрашивается вывод о нелинейной полезности денег (хотя в большинстве случаев полезность можно отождествлять с деньгами).

Но парадокс разрешен лишь частично, так как

потенциальные участники игры по-разному определяют собственную функцию полезности. Вывод простой и очевидный: в условиях неопределенности нельзя предсказать поведение потенциальных участников игры, поскольку неизвестны их функции полезности. Отсюда и возникает идея классификации участников в контексте их отношения к риску.

У каждого человека есть собственное отношение к риску, иначе говоря, к возможности потери денег. Принято выделять три категории:

• Нейтральные к риску;

• Любители риска;

• Противники риска.

Кто-то предпочитает не рисковать и не предпринимать рисковых действий, а кто-то, в этих же обстоятельствах готов рискнуть в надежде получить больше. Для объяснения выбора различных вариантов поведения, необходимо использовать концепцию ожидаемой полезности.

Практика показывает, что в большинстве люди всё-таки не склонны к риску. Такое поведение, помимо особенностей человеческой психики, обычно объясняется экономической причиной, а именно: действием закона убывающей предельной полезности.

У вас есть 100 руб. вам предлагают сыграть в «орёл/решка» и поставить 50 руб. В случае выпадения орла – вы получаете 50 руб. Выигрыша и в итоге у вас будет 150 руб. Если выпадет решка, то у вас в итоге будет 50 руб. То есть с вероятностью 1/2 выигрываете 50 руб. и с вероятностью 1/2 проигрываете 50 руб. Математическое ожидание равно 0, так как 0,5*50 + 0,5*(-50) = 0.

Если схематично изобразить на кривой совокупной полезности, то наглядно увидим, что ожидаемая полезность будет иметь отрицательное значение. В условных единицах полезности (числа выбраны произвольно) проигрыш будет равен -3 = 5–8, а выигрыш +1 = 8–7, что в сумме даёт -2.

Рисунок 7. Кривая совокупной полезности игры «орёл-решка».

В случае проигрыша ваши убытки в условных единицах полезности по величине будут больше, чем выигрыш (3 против 1 условной единицы). Хотя в денежном выражении и проигрыш и выигрыш равны 50 руб. каждый. Именно потому, что рассуждая в терминах полезности ситуация выглядит иначе, чем рассуждая в терминах денег и необходимо различать математическое ожидание суммы выигрыша и её ожидаемую полезность.

Ваши негативные эмоции от потери 50 руб. будут сильнее примерно в 2 раза, чем ваши радостные эмоции от находки такой же суммы денег. Надо будет найти как минимум 100 руб., чтобы эмоционально компенсировать потерю 50 руб. Конечно, вам доставит радость получить больше того, что вы имеете, но для вас гораздо ощутимее будет потеря того, к чему вы уже привыкли.

Человек больше ценит те вещи, которыми уже владеет, а не те, которыми может овладеть. В экономической теории данный феномен получил название эффекта владения. В классической экономической теории этот эффект невозможно объяснить. Но объяснить этот и многие другие эффекты удалось Даниэлю Канеману, опираясь на теорию перспектив. Его совместная работа с Амосом Тверски привела к созданию «поведенческой экономике».

Теория перспектив или поведенческие финансы

Предлагаем вашему вниманию небольшую задачку.

Попробуйте её решить самостоятельно и дать ответ, прежде чем продолжите чтение.

1. Ананас + яблоко стоят 110 руб.

2. Ананас стоит на 100 руб. дороже яблока.

ВОПРОС: Сколько стоит яблоко?

Теория была создана в 1979 году и развита в 1992 году Даниэлем Канеманом и Амосом Тверски. В 2002 году, несмотря на то, что Д. Канеман проводил исследования как психолог, а не как экономист, ему была присуждена Нобелевская премия по экономике «за применение психологической методики в экономической науке, в особенности – при исследовании формирования суждений и принятия решений в условиях неопределённости».

Поделиться:
Популярные книги

Шесть тайных свиданий мисс Недотроги

Суббота Светлана
Любовные романы:
любовно-фантастические романы
эро литература
7.75
рейтинг книги
Шесть тайных свиданий мисс Недотроги

Я еще не барон

Дрейк Сириус
1. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще не барон

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Не верь мне

Рам Янка
7. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Не верь мне

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Жандарм

Семин Никита
1. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
4.11
рейтинг книги
Жандарм

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Волк 7: Лихие 90-е

Киров Никита
7. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 7: Лихие 90-е

Целитель

Первухин Андрей Евгеньевич
1. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Менталист. Конфронтация

Еслер Андрей
2. Выиграть у времени
Фантастика:
боевая фантастика
6.90
рейтинг книги
Менталист. Конфронтация

Восход. Солнцев. Книга IX

Скабер Артемий
9. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IX

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке