Физика будущего
Шрифт:
6. Будущее космических путешествий
К звездам
Мы достаточно долго медлили, оставаясь на берегах космического океана. Теперь мы наконец готовы поднять паруса и отправиться к звездам.
Боги древних мифов разъезжали по небесным полям Олимпа на волшебных летающих колесницах. Боги Севера ходили по небесным морям в Асгард на быстрых северных кораблях-драконах.
Точно так же и мы — к 2100 г. человечество будет стоять на пороге новой эры космических исследований: полетов к звездам. Человек издавна мечтал о звездах; ночью эти небесные огоньки кажутся такими близкими! До сих пор добраться до них можно было только в мечтах, но к концу века именно звезды будут находиться в фокусе внимания ученых-ракетчиков.
Однако
Ближайшее будущее
(с настоящего момента до 2030 г.)
Внесолнечные планеты
Одним из самых поразительных достижений космической программы до сих пор было исследование космоса при помощи роботов, невероятно расширившее горизонты человечества.
Первой и главной целью роботизированных миссий будущего должен стать поиск в космосе землеподобных планет, пригодных для жизни, — священного Грааля всей космической науки. До сих пор при помощи космических и наземных телескопов ученым удалось обнаружить в далеких звездных системах около 500 планет; теперь новые планеты находят постоянно, с интервалом в одну-две недели. Жаль только, что современные инструменты позволяют обнаруживать исключительно гигантские планеты вроде Юпитера, жизнь на которых — по крайней мере, такая, какой мы ее знаем, — невозможна.
Чтобы найти очередную планету, астрономы ищут звезду, в движении которой наблюдаются легкие колебания. Скорее всего, такая звезда представляет собой систему двух тел, вращающихся вокруг общего центра масс; одно из тел — звезда, ясно видимая в телескоп, другое — планета-гигант размером с Юпитер, свет от которой (отраженный) слабее звездного примерно в миллиард раз. Там, где местное светило и планета-гигант вращаются вокруг общего центра масс, земные телескопы различают лишь слегка колеблющуюся звезду. При помощи этого метода ученым удалось обнаружить в космосе не одну сотню газовых гигантов, но для поиска небольших планет земного типа он слишком груб.
Самая маленькая планета, которую удалось обнаружить при помощи наземных телескопов, была зарегистрирована в 2010 г.; по массе она превосходит Землю в 3–4 раза. Примечательно, что эта «сверхземля» — первая из обнаруженных планет, находящаяся в зоне жизни своей звезды, т. е. на расстоянии, которое допускает существование на ней жидкой воды.
Ситуация изменилась с запуском в 2009 г. американского космического телескопа Kepler, а в 2006 г. — французского аппарата COROT. Эти обсерватории занимаются поиском крохотных флуктуаций в блеске звезд, которые могут быть вызваны прохождением небольшой планеты перед диском своей звезды, — в этот момент ее свет в какой-то небольшой степени блокируется. Тщательно просканировав тысячи звезд в поисках этих крохотных изменений яркости, Kepler и COROT смогут, вероятно, обнаружить в дальнем космосе сотни землеподобных планет. Затем каждую из них можно будет проанализировать на предмет наличия там жидкой воды — пожалуй, самого ценного вещества во Вселенной. Вода — универсальный растворитель и волшебный котел, в котором, вероятно, возникла первая ДНК. Если на некоторых экзопланетах будут обнаружены океаны из жидкой воды, наши представления о жизни во Вселенной могут измениться.
Журналисты — охотники за скандалами говорят: «Следуй за деньгами», но астрономы, занимающиеся поисками внеземной жизни, скажут иначе: «Следуй за водой».
Позже Kepler будет заменен другими, более чувствительными космическими аппаратами, такими как «Искатель землеподобных планет» (TPF) [32] . Хотя дата запуска этого аппарата откладывалась уже несколько раз, он по-прежнему остается наилучшим кандидатом на продолжение в будущем исследований Kepler.
Предполагается, что оптика на «Искателе» будет намного лучше и искать в космосе двойников Земли ему станет проще. Во-первых,
32
Проект TPF действительно долгое время фигурировал в перспективных планах NASA, но всегда оставался «бумажным проектом», далеким от этапа практической реализации. В проекте бюджета на 2012 финансовый год нет ни его, ни второго проекта из того же тематического направления — «Фотограф землеподобных планет» (TPI). Возможно, их наследником будет миссия New Worlds для получения изображений и спектроскопии землеподобных планет, однако о сроках ее запуска ничего сказать нельзя. — Прим. пер.
33
В действительности речь шла не о чувствительности, а о качестве изготовления поверхности зеркала. — Прим. пер.
Итак, в самом недалеком будущем у нас появится каталог из нескольких тысяч планет, из которых, возможно, несколько сотен окажутся весьма похожими на Землю по размеру и составу. Это, в свою очередь, подогреет интерес к отправке в дальний космос зондов для исследования таких планет. Множество ученых сосредоточат свои усилия на том, чтобы определить, есть ли на этих планетах океаны из жидкой воды и какое-то радиоизлучение — возможно, сигналы разумных форм жизни.
Европа — вне «зоны жизни»
Надо заметить, что и в пределах Солнечной системы имеется весьма интересный и соблазнительный объект для будущих исследований: Европа. Много десятилетий считалось, что жизнь в любой солнечной системе возможна только в так называемой «зоне жизни», т. е. на определенном расстоянии от светила, где на планетах не слишком жарко и не слишком холодно и где существуют подходящие для обитания условия. На Земле так много драгоценной жидкой воды, потому что она находится от Солнца на правильном расстоянии. На планете вроде Меркурия жидкая вода мгновенно вскипела бы, поскольку Меркурий находится слишком близко к Солнцу. На Юпитере — замерзла бы, так как он расположен слишком далеко. А поскольку первые молекулы ДНК и белков зародились, скорее всего, именно в жидкой воде, долгое время все были уверены, что жизнь в Солнечной системе может существовать только на Земле и, возможно, еще на Марсе.
Однако астрономы ошибались. После того как мимо Юпитера и его лун пролетели два межпланетных аппарата «Вояджер», стало очевидно, что в нашей системе существует еще одно место, где могла бы с комфортом существовать жизнь: под ледяным покровом лун Юпитера. Очень быстро внимание астрономов привлекла Европа, один из четырех крупнейших спутников Юпитера, открытых в 1610 г. Галилеем. Поверхность этого спутника всегда покрыта ледяной коркой, зато под ней — жидкий океан. Океаны на Европе намного глубже земных, поэтому считается, что по суммарному объему они превосходят океаны Земли вдвое.
Ученые испытали настоящий шок, осознав, что в Солнечной системе существует еще один серьезный источник энергии, помимо Солнца. Поверхность Европы под ледяной коркой непрерывно греют приливные силы. По мере движения спутника вокруг планеты-гиганта ее притяжение сплющивает луну в разных направлениях, вызывая трение глубоко в ядре. Трение порождает тепло, которое, в свою очередь, плавит лед и обеспечивает существование стабильного океана жидкой воды.
Это открытие означает, что луны далеких от Солнца газовых гигантов могут оказаться более интересными объектами для исследования, чем сами планеты. (Вероятно, именно поэтому Джеймс Кэмерон выбрал в качестве места действия фантастического фильма «Аватар» 2009 г. спутник газового гиганта, схожего по размерам с Юпитером.) Внезапно число мест во Вселенной, потенциально подходящих для жизни, многократно умножилось.