Физика для всех. Движение. Теплота
Шрифт:
Жонглируя булавами, кольцами, шляпами, – во всех случаях артист придает им вращение. Только в этом случае предметы возвращаются к нему в руки в том же положении, которое им было придано вначале.
В чем причина такой устойчивости вращения? Она связана с законом сохранения момента. Ведь при изменении направления оси вращения изменяется и направление вектора вращательного момента. Как нужна сила для изменения направления скорости, так нужен момент силы для изменения направления вращения, тем больший, чем быстрее вращается тело.
Стремление быстро вращающегося тела сохранять неизменным направление оси вращения может быть прослежено во многих случаях, подобных упомянутым. Так, вращающийся волчок не опрокидывается даже в том случае, если его ось наклонена.
Попробуйте рукой опрокинуть вертящийся волчок; оказывается, с ним не так-то легко справиться.
Устойчивость
Но на чем стоит волчок? Если он находится на подставке, которая поворачивается вместе с самолетом, то как же ось вращения сможет сохранить свое направление?
Подставкой служит устройство типа так называемого карданова подвеса (рис. 63). В этом устройстве при минимальном трении в опорах волчок может вести себя так, как будто он подвешен в воздухе.
При помощи вращающихся волчков можно автоматически поддерживать заданный курс торпеды или самолета. Это делается при помощи механизмов, «следящих» за отклонением направления оси торпеды от направления оси волчка.
На применении вращающегося волчка основано устройство такого важного прибора, как гирокомпас. Можно доказать, что под действием силы Кориолиса и сил трения ось волчка в конце концов устанавливается параллельно земной оси и, значит, указывает на север.
Гирокомпасы широко применяются в морском флоте. Главная их часть – мотор с тяжелым маховиком, делающим до 25000 об/мин.
Несмотря на ряд трудностей в устранении различных помех, в частности от качки корабля, гирокомпасы имеют преимущество перед магнитными компасами. Недостаток последних – искажение показаний из-за влияния железных предметов и электрических установок на корабле.
Гибкий вал
Валы современных паровых турбин – важные части этих грандиозных машин. Изготовление таких валов, достигающих 10 м в длину и 0,5 м в поперечнике, – сложная технологическая задача. Вал мощной турбины может нести нагрузку около 200 т и вращаться со скоростью 3000 об/мин.
На первый взгляд может показаться, что такой вал должен быть исключительно твердым и прочным. Это, однако, не так. При десятках тысяч оборотов в минуту жестко закрепленный и не способный изгибаться вал неминуемо ломается, какова бы ни была его прочность.
Нетрудно понять, почему непригодны жесткие валы. Как бы точно ни работали машиностроители, они не могут избежать хотя бы небольшой асимметрии колеса турбины. При вращении такого колеса возникают огромные центробежные силы – напомним, что их значения пропорциональны квадрату скорости вращения. Если они не уравновешены в точности, то вал начнет «биться» о подшипники (ведь неуравновешенные центробежные силы «вращаются» вместе с машиной), сломает их и разнесет турбину.
Это явление создавало в свое время непреодолимые затруднения в увеличении скорости вращения турбины. Выход из положения был найден на рубеже прошлого и нынешнего веков. В технику турбостроения были введены гибкие валы.
Для того чтобы понять, в чем заключалась идея этого замечательного изобретения, нам надо вычислить суммарное действие центробежных сил. Как же сложить эти силы? Оказывается, что равнодействующая всех центробежных сил приложена в центре тяжести вала и имеет такую же величину, как если бы вся масса колеса трубины была сосредоточена в центре тяжести.
Обозначим через aрасстояние центра тяжести колеса турбины от оси, отличное от нуля из-за небольшой асимметрии колеса. При вращении на вал будут действовать центробежные силы, и вал изогнется. Обозначим смещение вала через l. Подсчитаем
kl= 4 2 n 2 M( a+ l),
откуда
Судя по этой формуле, гибкому валу не страшны большие обороты. При очень больших (пусть даже бесконечно больших) значениях nпрогиб вала lне растет неограниченно. Величина k/(4 2 n 2 M), фигурирующая в последней формуле, обращается в нуль, а прогиб вала lстановится равным величине асимметрии с обратным знаком.
Этот результат вычисления означает, что при больших оборотах асимметричное колесо, вместо того чтобы разорвать вал, изгибает его так, чтобы уничтожилось влияние асимметрии. Изгибающийся вал центрирует вращающиеся части, своим изгибом переносит центр тяжести на ось вращения и таким образом приводит к нулю действие центробежной силы.
Гибкость вала является не только не недостатком, но и, напротив, необходимым условием устойчивости. Ведь для устойчивости валу надо прогнуться на величину aи при этом не сломаться.
Внимательный читатель может заметить погрешность в проведенных рассуждениях. Если сместить «центрирующий» при больших оборотах вал из найденного нами положения равновесия и рассматривать только центробежную и упругую силы, то легко заметить, что это равновесие неустойчиво. Оказалось, однако, что кориолисовы силы спасают положение и делают это равновесие вполне устойчивым.
Турбина начинает медленно вращаться. Вначале, когда nочень мало, дробь k/(4 2 n 2 M) будет иметь большое значение. Пока эта дробь при увеличении числа оборотов будет больше единицы, величина прогиба вала будет иметь тот же знак, что и величина первоначального смещения центра тяжести колеса. Таким образом, в эти начальные моменты движения прогибающийся вал не центрирует колесо, а, напротив, своим изгибом увеличивает общее смещение центра тяжести, а значит, и центробежную силу. По мере увеличения числа оборотов n(но при сохранении условия k/(4 2 n 2 M) > 1) смещение растет и, наконец, наступает критический момент. При k/(4 2 n 2 M) = 1 знаменатель формулы для смещения lобращается в нуль, значит, прогиб вала становится формально бесконечно большим. При такой скорости вращения вал сломается. При запуске турбины этот момент должен быть пройден очень быстро, надо проскочить критическое число оборотов и перейти к значительно более быстрому движению турбины, при котором начнется явление самоцентрирования, описанное выше. Но что это за критический момент? Мы можем переписать его условие в следующем виде: