Чтение онлайн

на главную

Жанры

Физиология и гигиена летчика в экстремальных условиях
Шрифт:

6) проведение в одинаковых комфортных условиях до и после температурного воздействия исследований для оценки текущего уровня работоспособности при решении тестовых задач и динамики их восстановления после стресс-воздействия у испытателей;

7) создание высокой мотивации у испытателей при их участии в экспериментах.

3.2. Общие подходы моделирования условий деятельности и оценки функционального состояния человека-оператора

Программа экспериментальных исследований функционального состояния и работоспособности человека-оператора при различной степени гипертермии включала ряд серий экспериментальных исследований, в которых моделировались возможные сочетания структуры и интенсивности операторской деятельности и экзотермической

нагрузки, характерные для предполетной и летной деятельности применительно к ЛА 4-го и перспективных поколений.

В зависимости от решаемых в различных сериях задач на операторе были одеты плавки, х/б белье, носки, демисезонные ботинки, кислородная маска КМ-34, защитный шлем ЗШ-5 или ЗШ-7. Использовался также вентилирующий костюм ВК-3М, ВК-3М(Д) с регулируемым распределением воздушного потока.

После одевания комплекта измерительных датчиков и летного снаряжения испытатель располагался в кабине стенда с температурой окружающей среды 17–25°С. Здесь проводилась регистрация фоновых показателей теплового состояния человека и оценивалась его работоспособность в комфортных условиях. По времени цикл занимал 20 мин.

Затем оператор переходил в кабину с высокой температурой окружающей среды в диапазоне 28–70°С. Принципиальная схема и общий вид стенда тренажера представлен на рис. 3.1 и 3.2.

Рис. 3.1 – Принципиальная схема стенда-тренажера моделирования факторов среды обитания и системы оценки функционального состояния человека-оператора

Рис. 3.2 – Стенд-тренажер моделирования факторов среды обитания и системы оценки функционального состояния человека-оператора

Следует подчеркнуть, что сложность явлений тепломассообмена в гермокабине самолета и в защитном снаряжении летчика потребовала от нас создания специального стенда тренажера. Последний был оборудован СКВ, аппаратурой, моделирующей летную деятельность, и контрольно-измерительными приборами. Стенд-тренажер был создан в 1984 г. в инициативном порядке С. М. Разинкиным (старший научный сотрудник), В. А. Мельниковым (инженер отдела), В. М. Духович (адъюнкт отдела) по расчетам подготовленными специалистами МАИ (Московский авиационный институт). Стенд был назван по первым буквам фамилий создателей РДМ-2, первый стенд РДМ-1 был создан для животных.

Серийная промышленная термобарокамера (например, ТБК-08 производства НПО «Звезда») (рис. 3.3) не могла обеспечить необходимых габаритов для симуляции явлений тепломассообмена в гермокабине самолета.

Рис. 3.3 – Промышленный образец термобарокамеры ТБК-8

Конструкция кабины стенда обеспечивала возможность пребывания в ней оператора при различных температурах воздуха с имитацией аэродинамического нагрева поверхности фонаря кабины. Система кондиционирования обеспечивала подачу воздуха в кабину, защитное снаряжение и на дыхание в подмасочное пространство.

Стенд представляет собой две расположенные рядом кабины объемом 2,2 м каждая, геометрические размеры которых приближены к кабинам самолетов-истребителей. Наличие двух кабин позволяло при проведении исследований поддерживать в одной из них комфортную температуру на уровне 15–25°С, а во второй – повышенную, а также при необходимости повышенную в обеих кабинах.

Нагревание камеры осуществлялось с помощью подачи в нее воздуха, нагретого до температуры 130–200°С в объеме до 300 л/мин посредством пропускания его по системе трубопроводов через электротуннель печи СУОЛ-1. Забор воздуха для нагревания производился из магистрали высокого давления, либо с помощью центробежных регуляторов из кабины, изменяя расход подаваемого воздуха и его температуру. Температура, задаваемая в камере

во время эксперимента, поддерживалась с точностью 2°С. За счет постепенного притока горячего воздуха в кабину осуществлялось его перемешивание путем конвекции или с использованием средств принудительной вентиляции. Это позволяло поддерживать градиент температур голова–ноги, равный 8–12°С, отражающий реальный перепад температуры воздуха по вертикали в кабине самолета. В полете, а также при необходимости поддерживать практически равномерный нагрев, имитирующий нагрев ЛА в ожидании вылета, относительная влажность воздуха составляла 40–60% при температуре в камере 20–35°С и 6–10% при температуре 40,0–70,0°С.

При проведении исследований по оценке эффективности перспективных средств защиты летчика температура 60°С представляла собой среднюю температуру кабины. При этом температура воздуха в районе головы оператора находилась в диапазоне 66 ± 2°С, стен – 58 ± 2°С.

Внутренняя поверхность камер облицована листовым алюминием. Теплоизоляционный пакет из стекловаты, толщиной 5 см и фанеры (12 мм) обеспечивал температуру на внешней стороне обивки 20°С при температуре в камере +60°С.

Одновременно с началом эксперимента практически во всех исследованиях включалась шумовая фонограмма, транслируемая в кабину, где находился испытатель. Громкоговоритель располагался на уровне человека-оператора и позволял создать шум мощностью 85–90 дБ, аналогичный шуму в кабине летчика истребительной авиации.

Система кондиционирования воздуха, подаваемого на вентиляцию подкостюмного и подшлемного пространства, состояла из набора резиновых трубок 15 мм, соединенных с ротаметрами и регулировочными вентилями с помощью разъемных муфт. Горячая вентиляционная магистраль представляла собой трубку длиной 10 м, намотанную на барабан 0,2 м и помещенную в кабину стенда. Варьируя длину трубки, сматываемой с барабана и выводимой за пределы камеры, можно было изменять температуру подаваемого воздуха в пределах от комнатной до 10°С ниже температуры воздуха в камере.

Холодная вентиляционная магистраль представляла собой трубку длиной 7 м, смотанную в спираль, помещенную в металлический бак 0,3 м и объемом 10 л, наполненный смесью холодной воды и льда. Изменяя длину трубки, находящейся в баке, можно было добиться понижения температуры подаваемого воздуха до 15°С непосредственно у входа в вентиляционное снаряжение и подшлемник при наиболее теплонапряженных режимах.

Система вентиляции головы представляла собой полихлорвиниловую трубку 8 мм, спрофилированную в виде кольца 17 см и с подводящими магистралями, расположенными в затылочной части головы. На кольцевой части трубки имелись отверстия 1–1,5 мм для выхода вентилирующего воздуха. Стыковка трубок с подводящими магистралями производилась с помощью легкоразъемных переходников. Вес кольца – 20 г.

Качество операторской деятельности, выполняемой на стенде-тренажере, оценивалась методом двухмерного компенсаторного слежения за сигналами синусоидальной формы с частотой 0,15x0,15 Гц. Разработка и сопровождение модели слежения проводилось по авторской методике инженера, научного сотрудника Д. А. Арбузова. На первом этапе сигнал задавался прибором МН7, который позже был заменен на более современную модель МН10 (рис. 3.4). Основной проблемой приборов серии МН являлось то, что все они были ламповыми и в течение непродолжительной работы из-за нагрева в них сбивалось положение «нуля». Учитывая эту проблему и развитие научно-технического прогресса, прибор МН 10 был в последствии заменен на аналого-вычислительный комплекс АВК 2/3 (рис. 3.5), в сочетании с выполнением задачи выбора из 2 альтернатив, задаваемой аппаратурой «Физиолог-М». Прибор индикатора НКП-4 находился на расстоянии 60 см от глаз испытателя. Удержание стрелок прибора НКП-4 в заданной зоне диаметром 10 мм производилось посредством подачи электрических сигналов на стрелки прибора при помощи ручки, соединенной с потенциометрами по «крену» и «тангажу». Индикатор блока «Резервы» аппаратуры «Физиолог-М» находился вне поля зрения оператора на том же расстоянии, что и НКП-4. Ответная часть кнопки находилась на уровне левого подлокотника кресла оператора. Перед началом слежения операторы инструктировались о необходимости выполнения в первую очередь слежения, а во вторую – задача «Резервы».

Поделиться:
Популярные книги

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Береги честь смолоду

Вяч Павел
1. Порог Хирург
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Береги честь смолоду

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Физрук: назад в СССР

Гуров Валерий Александрович
1. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук: назад в СССР

Огни Аль-Тура. Желанная

Макушева Магда
3. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.25
рейтинг книги
Огни Аль-Тура. Желанная

Кодекс Охотника. Книга III

Винокуров Юрий
3. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Кодекс Охотника. Книга III

(не)Бальмануг.Дочь

Лашина Полина
7. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(не)Бальмануг.Дочь

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Везунчик. Проводник

Бубела Олег Николаевич
3. Везунчик
Фантастика:
фэнтези
6.62
рейтинг книги
Везунчик. Проводник

Особое назначение

Тесленок Кирилл Геннадьевич
2. Гарем вне закона
Фантастика:
фэнтези
6.89
рейтинг книги
Особое назначение

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Проклятый Лекарь IV

Скабер Артемий
4. Каратель
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь IV