Фрегат капитана Единицы
Шрифт:
– Совпадут, - ответил Пи, - ведь катеты эти одинаковой длины.
– Верно. Теперь допустим, что эти катеты крепко-накрепко склеились. Наложатся друг на друга два других катета? Думайте, думайте!
– Ясно, наложатся, - ответил я.
– Углы между катетами у обоих треугольников прямые - значит, одинаковые, по 90 градусов, длины катетов тоже одинаковые.
– Ты делаешь успехи, Нулик!
– похвалил капитан.
– Итак, логика помогла нам выяснить, что катеты обоих треугольников накрепко склеились.
Мы с Пи понимали, что гипотенузы должны совпасть, но капитан потребовал, чтобы мы это до-ка-за-ли! Да, нелёгкая это работа - из болота тащить бегемота! Хорошо, капитан дал наводящий вопрос: все ли вершины треугольника совпали?
– Все!
– сказал Пи.
– Значит, - сообразил я, - совпали и гипотенузы ВС и вс!
Капитан прищурился:
– Ой ли? А из чего это следует?
Из чего? Ах я чудак этакий! Да из аксиомы! Аксиомы о том, что через две точки можно провести только одну прямую!
– Логично, - согласился капитан.
– Теперь теорема доказана: треугольники в точности наложились один на другой. Стало быть, они равны между собой.
Ура! Да здравствуют аксиомы!!
ПОСТОЯННЫЕ ОТНОШЕНИЯ
4 нуляля
Какие чудные имена бывают у островов! Как вам, например, нравится такое - "Остров Отношений"? Мы с коком чуть со смеху не лопнули, когда услышали, что так называется нынешняя наша стоянка. Добро бы ещё это был Остров Добрых Отношений или, на худой конец, Остров Плохих Отношений... А то просто отношений - и всё тут!
Но капитан сказал, что остров этот ни к добрым, ни к плохим отношениям отношения не имеет. Это остров отношений математических.
Мы, конечно, потребовали объяснений и, как всегда, своё получили.
– Смотрите, - сказал капитан. И написал на листе блокнота вот что:
6 : 2 = 3
Ну, мы сразу поняли, что это пример на деление.
– Верно, - сказал капитан, - но тот же самый пример на деление можно рассматривать как пример на отношение чисел. Разделив шесть на два, мы выясним, как эти числа относятся друг к Другу.
– Ага!
– обрадовался я.
– Значит, у чисел всё-таки есть какие-то отношения!
– Разумеется, - подтвердил капитан, - но не добрые и плохие, а числовые. И если у нас с тобой отношения могут меняться в зависимости от твоего поведения (сегодня - хорошие, завтра - плохие), то у чисел они никогда не меняются. Отношение шести к двум всегда равно трём, десяти к двум - пяти, тридцати шести к четырём - девяти...
– Значит, разные числа относятся друг к другу по-разному?
– сообразил Пи.
– Не всегда, - сказал капитан.
– В том-то и дело, что есть много пар разных чисел, которые относятся друг к другу совершенно одинаково. Отношение шести к двум равно трём. Но ведь трём равно и отношение двенадцати
6 : 2 = 12 : 4
Ведь пропорция как раз и есть равенство двух отношений, а числа, образующие пропорцию, называются соответственно пропорциональными.
Капитан хотел сказать ещё что-то, но я спросил: что значит "соответственно"?
– А то, - объяснил капитан, - что делимые двух отношений пропорциональны их делителям. 6 и 12 пропорциональны 2 и 4.
Ничего не скажешь, всё понятно, но, по совести, скучновато. Во всяком случае, после рассказа капитана ничего интересного от острова Отношений мы не ждали. И напрасно.
Не успели мы сойти на берег, как тут же попали в кино и с удовольствием посмотрели весёлый приключенческий фильм "Великолепная Восьмёрка". Правда, какое отношение к числовым отношениям имеет кино, мы поначалу не уловили, но оказалось, что самое непосредственное.
Кинолента состоит из крохотных кадров, а на экране те же кадры мы видим увеличенными во много-много раз. Но самое главное здесь в том, что числовое отношение всех размеров изображения остаётся при этом точно таким же, как и на плёнке.
На плёнке изображён дом. Высота его, допустим, 8 миллиметров, ширина 4. На экране же высота этого дома стала 80 сантиметров, а ширина - 40. Дом вырос в 100 раз. Но отношение его высоты к ширине ничуть от этого не изменилось. Все размеры его соответственно пропорциональны размерам на плёнке. Стало быть, на экране мы видим точное подобие того, что есть на киноленте. Вот почему изображения, все размеры которых соответственно пропорциональны, называются подобными.
Мы, разумеется, тут же предположили, что раз существуют изображения подобные, значит, должны быть какие-то бесподобные.
– Выдумщики!
– засмеялся капитан.
Он сказал, что бесподобных изображений в математике нет, зато есть не подобные, и повёл нас... в комнату смеха.
Да, да. На Острове Отношений тоже есть комната смеха. Как в нашем парке культуры и отдыха. Здесь, как водится, понаставлены всякие зеркала. В одном ты - кубышка, поперёк себя толще, в другом - длиннющая жердь.
Я очень люблю смотреться в такие зеркала и каждый раз хохочу до упаду. Только прежде я смеялся просто так, а сегодня понял, что меня смешит. Я смеюсь оттого, что вместо подобной себе фигуры вижу не подобную, не пропорциональную, то есть такую фигуру, где привычное соотношение всех частей тела изменено, нарушено.
Но для чего всё-таки нужны все эти подобия и неподобия, пропорциональности и непропорциональности? Зачем их изучают? Да затем, что без правильных пропорций не создашь ничего путного.