Фрегат капитана Единицы
Шрифт:
– Дело в том, - продолжал он, - что на этом острове отгадывают цвет шахматных пешек. Но так как их всего два - чёрный и белый, - а угадать надо только один из двух, то и говорят, что вероятность угадывания равна отношению одного к двум, то есть 1/2. Вот почему на флаге этого острова написана эта дробь. А если бы перед нами было не две, а несколько разноцветных пешек - красная, зелёная, синяя, жёлтая и так далее, то угадать, какая из них зажата в руке, было бы уже гораздо труднее. В этом случае вероятность угадывания уменьшается.
И
Понятно, что угадывали на этом острове гораздо реже, чем на первом. И я догадался, что вероятность угадывания здесь равна отношению одного к шести, то есть 1/6.
– Верно, - сказал капитан и спросил, какова будет вероятность угадывания, если задумать, чтобы выпало либо два очка, либо четыре.
И я опять догадался, что тогда и вероятность станет вдвое большей. Она будет равна уже не 1/6, a 2/6. А это всё равно что одна треть - 1/3.
– А вот что будет, если задумать, чтобы выпало ЛЮБОЕ число очков?
– Тогда нужно ехать на другой остров, - ответил капитан, - на остров Достоверностей. Вон тот, с синим флагом.
Только теперь я заметил синий флаг, на котором красовалась не дробь, а единица. Это почему же?
– Да потому, - пояснил капитан, - что тебе нужно, чтобы из шести возможных случаев выпал любой. Значит, вероятность угадывания равна отношению шести к шести: 6/6 - стало быть, единице. А это уже достоверность, то есть то, что произойдёт непременно.
В это время кок заметил остров, над которым развевался чёрный флаг с большим белым нулём посередине. Капитан сказал, что это остров Невероятностей, то есть остров, где вероятность угадывания равна нулю.
– Как же это может быть?
– спросили мы с коком одновременно.
– А вот как, - ответил капитан.
– Предположим, кто-нибудь из вас загадает, чтобы у этого кубика выпало СЕМЬ очков.
– Но это невозможно!
– воскликнул я.
– Ведь у кубика cамое большое число очков - шесть.
– В том-то и дело, - обрадовался капитан.
– Стало быть, семь выпасть не может. Значит, в этом случае нет никакой вероятности, что вы отгадаете. Вероятность равна нулю!
Интересная игра - теория вероятностей! Но капитан возмутился и сказал, что это не игра, а наука. Хотя и родилась она из игры. Так частенько бывает. И ещё он сказал, что теория вероятностей помогает учёным, инженерам и особенно экономистам, что она необходима народному хозяйству страны и что мы в этом очень скоро убедимся.
Когда мы вернулись на Фрегат, Пи спросил меня: какова вероятность, что обед будет готов вовремя? Ведь картошки-то мы так и не начистили! Ясно: вероятность равна нулю!
КАКОЙ
6 нуляля
Сегодня мы попали на Землю Статистики. Странная это земля: куда ни поглядишь - всюду числа, числа, числа... В какое здание ни войдёшь - везде что-то подсчитывают. На счётах. На арифмометрах. На электронно-счётных машинах. Без конца звонят телефоны, поступают телеграммы, радиограммы, приносят какие-то пакеты...
Капитан привёл нас в новый просторный дом. Здесь в одной из комнат за столом сидел Старший статистик. Мы познакомились. Но только я собрался атаковать его вопросами, как зазвонил телефон. Старший статистик взял трубку.
– Да-да, это я. Я просил сообщить, сколько в прошлом году родилось мальчиков. Сколько вы говорите? Ага. А девочек? Угу. Благодарю вас. До свидания.
Не успел он положить трубку, как телефон зазвонил снова. На этот раз сообщали, какого роста мужчины работают на макаронной фабрике.
– 460 человек - 165 сантиметров, - записывал статистик.
– 380 человек - 170 сантиметров... А один - двух метров? Я не ошибся? Ха-ха! Ну что ж, так и запишем...
До чего любопытные люди живут на Земле Статистики. Всё им нужно знать!
– А как же, - сказал Старший статистик, - ведь у нас хозяйство плановое. Поэтому нужно заранее подсчитать, сколько построить новых школ, сколько сшить форменных костюмов для школьников, сколько пар ботинок, сколько, наконец, понадобится футбольных мячей, волейбольных сеток, да мало ли чего ещё! На все эти вопросы отвечает статистика.
– Вас послушать, без статистики хоть ложись да помирай.
– Конечно, - отвечал Старший статистик, ничуть на меня не обидевшись, - статистика имеет отношение решительно ко всему.
– Даже к ботинкам?
Понятно, я сказал это для смеха. Но Старший статистик совершенно серьёзно подтвердил, что статистика и вправду играет не последнюю роль в производстве обуви. Ведь обувь носят все: и пионеры, и пенсионеры. Даже грудным младенцам, которые вовсе ещё не умеют ходить, и тем надевают пинетки. Стало быть, надо знать, сколько изготовить обуви мужской, сколько женской, а сколько - для детей. Но это ещё не всё. Для разных возрастов шьются разные фасоны обуви. Кроме того, ноги у разных людей разные. И по форме, и по размеру.
Тут я окончательно запутался. Капитан говорит, что на земле три миллиарда жителей. Неужели статистики перемерили все ноги на свете? Вот когда я наконец рассмешил нашего собеседника!
– Зачем измерять все ноги?
– сказал он, насмеявшись всласть. Достаточно измерить длину стопы хотя бы у тысячи взрослых мужчин, чтобы знать, сколько потребуется мужской обуви разных номеров вообще.
– А по-моему, недостаточно, - сказал Пи.
– У одной тысячи так, у другой - этак...
– Замечание дельное, - согласился Старший статистик.
– Но тут на помощь статистикам приходит математика.