Гайд по астрономии. Путешествие к границам безграничного космоса
Шрифт:
Магматическая активность на поверхности этих небесных тел возрастает с увеличением их размера. Например, Луна, Меркурий и Марс некогда были активны, но уже примерно миллиард лет на них почти ничего не происходит. Земля и Венера, напротив, продолжают активно преображать свой внешний облик. Атмосфера, по всей видимости, тоже зависит от массы. На Луне и Меркурии имеются лишь малейшие следы атмосферных газов. Марс занимает промежуточное положение: в его атмосфере преобладает углекислый газ, но давление на поверхности составляет всего 1/157 от земного. А вот Венера скрыта облаками углекислого газа, количество которого в 93 раза превышает уровень, свойственный Земле, поэтому парниковый эффект нагревает ее поверхность до 477 °C — такая температура достаточно высока, чтобы расплавить свинец и испарить серу.
Рис. 4.2.
Газовые гиганты
Юпитер и Сатурн, подобно уличным хулиганам, наводят свои порядки по всей Солнечной системе. В частности, Юпитер когда-то помешал сформироваться настоящей планете — она могла появиться в зоне, занятой в наши дни астероидами. Его гравитационное воздействие вытеснило большую часть субпланетных обломков, некогда занимавших эту кольцевую зону, за пределы Солнечной системы или к Солнцу, и осталась лишь горстка астероидов, которую мы видим сегодня. Сурово Юпитер обошелся и с кометами — вытеснил их с «родных земель» вблизи орбиты Нептуна и перенаправил во внутреннюю Солнечную систему или к кометному облаку Оорта, расположенному в 5000–50 000 а. е. от Солнца. Конечно, эти гигантские миры по праву вызывают наш интерес, а их системы колец и группы спутников поистине поразительны.
Юпитер
Юпитер, названный в честь верховного бога древних римлян, содержит более трех четвертей всего планетарного вещества в Солнечной системе. Нам это известно, поскольку мы можем отслеживать орбитальные движения его спутников и знаем, как далеко от них до Юпитера, а закон всемирного тяготения Ньютона помогает нам определить гравитационную массу, ответственную за поддержание этих движений. Расчетная масса, в 318 раз превышающая земную, и объем, в котором поместилось бы 1405 таких планет, как наша, дает среднюю плотность 1,34 г/см3. Эта величина примерно равняется трети средней плотности каменистой Земли и очень близка к плотности воды в земных океанах (1 г/см3). Если честно, Юпитер лучше было бы назвать не «газовым гигантом», а «жидким». Его внутреннее строение остается довольно неопределенным, но считается, что он содержит относительно плотное ядро неизвестного состава, окруженное последовательными слоями жидкого атомарного водорода — настолько плотного, что он проводит электричество подобно металлу, — а дальше идут слои жидкого молекулярного водорода, газообразного молекулярного водорода, аммиака и воды (рис. 4.3). Со всем этим богатством Юпитер совершает полный оборот вокруг своей оси за каждые 9,8 часа, отчего в атмосферных поясах, зонах и пятнах планеты рождаются сильные ветры. Вокруг этого гиганта, охваченного вихрями, обращаются по меньшей мере семьдесят девять спутников, включая четыре галилеевых — это Ио, Европа, Ганимед и Каллисто, — каждый из которых сам по себе может рассматриваться как удивительный мир.
Рис. 4.3.Вверху: схематичное изображение газовых гигантов в разрезе. Различные слои основаны на физических моделях. В каждом случае природа ядра наименее определена. Внизу: снимок Юпитера, сделанный космическим аппаратом «Кассини». Видны темные пояса, более яркие зоны, белые овалы и Большое красное пятно. Черная точка — это тень Европы, спутника Юпитера, второго по отдаленности из четырех, открытых Галилеем. (Вверху: материалы любезно предоставлены NASA / Лунно-планетный институт; внизу: материалы любезно предоставлены NASA / JPL / Аризонский университет.)
Сатурн
При взгляде в хороший телескоп вид прославленных колец Сатурна поражает воображение (рис. 4.4). Многим кажется, что перед ними предстает невозможное явление — как если бы кто-то подвесил перед телескопом модель. Сатурн во многом напоминает Юпитер: во-первых, по составу он подобен Солнцу, причем почти весь его объем приходится на водород (а вот гелия, как ни странно, очень мало). Во-вторых, он быстро вращается: одни сатурнианские сутки занимают всего 10,6 земного часа, и это стремительное вращение превратило планетную атмосферу в полосчатые циркуляционные системы, похожие на параллельные темные пояса и яркие зоны Юпитера. В-третьих, Сатурн, как и Юпитер, до сих пор излучает энергию, высвобожденную при гравитационном коллапсе его родительского облака. А кроме того, обе планеты излучают больше тепла, чем получают от Солнца.
Считается, что кольца Сатурна состоят из различных льдов, объединенных в неимоверно тонкие концентрические полосы. Возможно, сами кольца недолговечны и появляются и исчезают в масштабах примерно 100 млн лет. За их пределами вокруг планеты вращается более шестидесяти спутников, в том числе Титан — единственный спутник в Солнечной системе, обладающий плотной атмосферой, — и Энцелад, с поверхности которого извергаются жидкие гейзеры.
Рис. 4.4. Сатурн и его ледяные кольца — одно из самых потрясающих зрелищ в Солнечной системе. Поскольку ось его вращения на 27° наклонена к плоскости его орбиты, Сатурн, если смотреть с Земли, меняет свой внешний вид в течение одного сатурнианского года (29,5 земного года). Как показано на этом снимке, сделанном космическим телескопом «Хаббл», с 2000 по 2006 год система колец Сатурна из почти закрытой стала почти открытой, а в его южном полушарии настало лето. (Материалы любезно предоставлены NASA / Проект «Наследие Хаббла» / STScI.)
Ледяные гиганты
Люди античного мира знали о Меркурии, Венере, Марсе, Юпитере и Сатурне, поскольку эти планеты можно увидеть и отследить невооруженным глазом. Но лишь после того, как был создан телескоп, удалось дополнить шесть главных планет (считая и Землю) более удаленными и гораздо более тусклыми мирами. Ими стали Уран и Нептун, самые удаленные крупные планеты в Солнечной системе. Плутон гораздо меньше, и в 2006 году он был официально понижен до второстепенного статуса «карликовой планеты», в то время как поиски другой крупной «планеты Х» пока ни к чему не привели.
Уран
Уран обращается вокруг Солнца на расстоянии 19,2 а. е. — в четыре раза дальше, чем Юпитер, и вдвое дальше, чем Сатурн. Поэтому он получает 1/16 излучения, получаемого Юпитером, и 1/4 того, которое доходит до Сатурна. При равновесной температуре –208 °C аммиак и вода, присутствовавшие в атмосфере Урана, полностью замерзли и «выпали снегом». В атмосфере остался лишь избыток молекулярного водорода и газообразного метана. Метан преимущественно поглощает красный свет Солнца, отражая при этом зеленый и голубой свет, и из-за этой «пристрастной» отражательной способности видимая атмосфера Урана кажется зеленоватой.
Масса планеты (в 14 раз больше земной) и размер (в 4 раза больше земного) дают среднюю плотность 1,3 г/см3. Исходя из этих объемных свойств, планетологи заключают, что Уран содержит ядро из металла и камня, толстый промежуточный слой ледяной взвеси, внешний слой жидкого молекулярного водорода и разреженную атмосферу (рис. 4.5), так что прозвище «ледяной гигант» ему вполне подходит. Однако эти выводы сделаны совсем недавно, а до 1995 года в книгах, посвященных планетам, утверждалось, что во внутренних слоях Урана и Нептуна преобладает жидкий водород.
Об Уране мы знали очень мало, пока в 1986 году мимо него не пролетел космический зонд «Вояджер-2». Во время краткого сближения зонда с планетой удалось подтвердить, что ось вращения Урана наклонена на 98° — так, что он почти лежит на боку. Такой экстремальный наклон приводит к самым аномальным временам года в Солнечной системе. Когда северный полюс планеты направлен к Солнцу, ее северное полушарие непрерывно освещено дневным светом, а южное пребывает в постоянной темноте. Эти экстремальные периоды солнцестояния в каждом полушарии меняются местами по прошествии половины уранианского года (42 земных года). Как именно Уран перевернулся «с ног на голову», остается неясным, но многие астрономы подозревают, что его ориентацию могло изменить сильное столкновение с неким блуждающим телом размером с планету.