Хаос и структура
Шрифт:
В рациональном числе тоже нет плоскостной точки зрения. Рациональное число не плоскостно, но рельефно, ибо оно обязательно совмещает в себе три слоя — измеряющее, измеряемое и измерение. Рациональное число говорит нам о том, что измеряемое измеряется и что по мере [170] этого процесса измерения получается именно измеренное, вполне адекватно и точно измеренное, нечто, целиком перешедшее в измеренное и отдавшее себя измерению, то, что ничего не утаило из своего содержания от измеряющего и все передало из себя на волю измеряющего. Эти три слоя совершенно неискоренимо присутствуют в рациональном числе, и без них невозможна такая категория.
170
В рукописи: в размере.
Внутреннее содержание числа, которое входит в синтез с внешним его фактом для порождения рационального числа, берется на стадии целости. Целость есть то внутреннее, что подлежит выразить внешне, и притом с абсолютной точностью. Но в распоряжении «внешнего» находится на изучаемой стадии только утвержденность, положенность числа; число здесь утверждается, как бы кладется или ставится на некую плоскость, наподобие куска камня или дерева. Из этих положенностей или утвержденностей или, вернее, при помощи их надо получить и выявить все внутреннее содержание числа, т. е. его нераздельную и неделимую целость. Совершенно ясна модификация первых двух категорий, вступающих в этот интимный союз, порождающий сферу рациональных
171
В рукописи: под.
Но в синтезе участвует внутренняя сторона числа, и притом, как мы знаем, участвует она на стадии целости. С внешней положенностью числа синтезируется здесь именно целое число. Что это вносит в общее содержание изучаемого синтеза? Этим вносится в результат измерения прежде всего целость как таковая, а кроме того, и целость в ее развернутом виде, т. е. вносится также и наличие частей, но с точной фиксацией зависимости их от целого и, следовательно, наличия целого в каждой отдельной части. Конкретно говоря, вхождение в изучаемый синтез категории целого числа обусловливает собою применение здесь таких арифметических действий, которые приводили бы или просто к целым числам, или к таким дробным, которые состояли бы из целого количества целых же частей числа. Обычно это выражается так, что рациональное число определяют как число, образованное путем четырех арифметических действий и возвышения в степень. Конечно, рациональным числом будет и то, которое получено путем извлечения корня, но только требуется, чтобы этот корень тут действительно извлекался. Общая идея, стало быть, здесь та, чтобы соблюдался именно принцип целости — как вообще (в случае целых чисел), так и в развитом виде, когда образуются целые части и этих частей берется целое же количество (результат деления и извлечения корня). Если внешняя положенность внесла в рациональное число соста–вленность его из единицы, то внутренняя целость, входящая в синтез для порождения рационального числа, вносит сюда определенный метод этого составления из единицы, а именно—те арифметические действия, которые базированы на категории целости. Можно и просто вместе с математиками сказать, что рациональное число есть то, которое составлено из единицы путем сложения, вычитания, умножения, деления и возведения в степень, и только надо понимать, из каких логических предпосылок вытекает самая возможность такой синтетической категории. Предпосылки эти — участие «положительности» и «целости».
4. Аналогия с измерением является основанием для усвоения всей диалектической сущности рационального числа. Если мы соблюдаем ту простую картину, которую представляет собою всякое измерение, и не исказим этого житейски очевидного явления различными теоретическими привнесениями, то это даст нам ключ и к пониманию диалектики рационального числа. Что мы делаем, когда что–нибудь измеряем? Во–первых, мы уже знаем или должны предварительно знать то, чем мы производим измерение. Пусть это будет метр, аршин, верста, но мы должны знать, чем же мы, собственно, мерим, должны знать принимаемую нами единицу измерения. Затем, во–вторых, если измерение действительно происходит, мы должны эту единицу применить к измеряемому, уложивши ее в этом последнем так, чтобы она, повторенная известное число раз, заполнила все протяжение измеряемого. И наконец, в–третьих, измерение только тогда осуществляется, когда получен ответ, сколько же раз наша единица поместилась в измеряемом. Этот простой факт измерения, стало быть, требует, 1) чтобы было известное число полаганий, 2) чтобы полагания эти исчерпывали внутреннее протяжение измеряемого и 3) чтобы было известно, как именно это исчерпывание [172] происходило. Точно такая же картина, и житейски очевидная, и диалектически синтетическая, предстоит нам и в рациональном числе. Рациональное число — то, которое измерено единицей и которое выявило свое внутреннее содержание (в числе оно всегда прежде всего чисто количественное) в виде ряда действий с этой единицей. Рациональное число — четкая картина той или иной комбинации единицы. И три смысловых слоя — внутренняя целость, внешняя единичная положен–ность и тождество того и другого в виде измеренного числа, в виде соизмеримости его с единицей, — эти три слоя с полной очевидностью и непреложностью входят в самую сущность рационального числа.
172
В рукописи: исчезновение.
5. Отсюда точная диалектическая формула этой категории гласит следующее: рациональное число есть тождество внутреннего и внешнего инобытия числа, когда первое взято на стадии целости, а второе—на стадии положительной утвержденности.
Усвоивши эту простую структуру рационального числа, нетрудно перейти и к тому типу числа, который доставил немало затруднений для своей формулировки, хотя чисто количественно и счетно он, конечно, понятен так же, как и вообще всякий другой тип числа. Мы имеем в виду иррациональное число. После вышеприведенных рассуждений ему можно предоставить только вполне определенное место в диалектической системе.
1. К раскрытию понятия иррационального числа можно подойти, согласно намеченному выше плану исследования, двояко: во–первых, со стороны категории рационального числа и, во–вторых, со стороны категорий отрицательного и дробного числа. Разумеется, на самом деле это есть один и тот же—диалектический — подход и различие здесь между двумя точками зрения только внешнее, вытекающее просто из необходимости распределять один и тот же материал по разным признакам. Однако эти два подхода, как сказано, вполне уместно различать.
Что такое иррациональное число в сравнении с рациональным? Оно есть его антитезис. И раз это так, то тем самым рисуется уже совершенно специфическая характеристика иррационального числа, поскольку всякий вообще антитезис по одному только тому, что он антитезис, уже есть вполне специфическая диалектическая структура. Так как антитезис есть инобытие, то иррациональное число есть инобытие рационального, переход его в свою противоположность. Переход же в инобытие может осуществиться только тогда, когда уничтожится основная сущность рационального числа, а именно взаимная соизмеримость внутреннего
173
В рукописи: даже.
Вот тут–то и выясняется необходимость второго подхода к анализу иррационального числа, т. е. необходимость привлечения категорий отрицания и дробности, являющихся как раз противоположностью старых категорий полагания и целости. Ведь та новая триада, которую мы сейчас анализируем, — рациональное, иррациональное, мнимое—вся целиком есть синтез внутреннего числового и внешневыраженного числового содержания, так что и рациональное есть синтез и тождество внутреннего и внешнего, и иррациональное есть синтез и тождество внутреннего и внешнего, и так же — мнимое. Но рациональное есть тезис этого тождества, иррациональное— антитезис, а мнимое, как увидим дальше, окажется синтезом этого тождества внутреннего и внешнего. И эта разница положения в диалектической системе обусловливает собою и различие тех смысловых предпосылок, из которых вытекают эти три вида синтезов. Когда мы переходим к иррациональности, то сталкиваемся уже не с полаганием и целостью, т. е. не с целостным полаганием, или полаганием целости, но с отрицанием дробного свойства (или с дробным отрицанием бытия). Формулируем же это диалектическое обстояние подробнее.
2. Итак, иррациональное число возникает как синтез отрицания и дробности. С первого взгляда этот синтез имеет весьма странный вид, но это потому, что обе эти категории, «отрицание» и «дробность», обычно понимают слишком арифметично, т. е. слишком счетно и количественно, не учитывая всей полноты их диалектической и просто логической значимости. «Отрицание» только в соединении с простым арифметическим числом получает свою обычную вычислительную значимость; само же по себе оно гораздо шире по смыслу, и этот широкий смысл и надо иметь в виду в наших рассуждениях. Отрицание, как мы видели, есть переход от утверждения в сферу, где этого утверждения нет, но где дано оно только категориально, в становящемся виде; оно тут только стремится быть утверждением, но не может им стать. Оно как бы вот–вот станет утверждением, но никогда не может им стать фактически. Мы уже видели, анализируя категорию отрицательного числа, что отрицание здесь нельзя понимать в абсолютном смысле; оно может стать в каждое мгновение утверждением, и –му оно тут — относительное отрицание [174] . Лучше всего проявляется чистое отрицание в процессе становления. Когда вещь А дана в процессе становления, то каждое мгновение этого становления есть новое и небывалое в сравнении с предыдущим мгновением, оно есть его инобытие, и это иное и новое нарастает каждое мгновение, каждый момент. Поэтому каждый момент тут есть отрицание другого, предыдущего; и все моменты, вместе взятые, т. е. все становление вещи целиком, в некотором смысле вся вещь целиком, есть сплошное отрицание и каждого отдельного момента, и всей вещи целиком, проходящей через эти моменты. Чистое становление, которое мы потому и называем алогическим становлением, и есть наиболее отчетливая форма диалектического отрицания. Возьмем эту наиболее отчетливую форму отрицания и запомним ее внутреннюю сущность. Нашим тезисом, который войдет в иррациональность, будет именно чистое отрицание, чисто алогическое становление, когда нет никакого и нигде устойчивого состояния и когда все неизменно и сплошно течет, без всяких задержек и без всякой раздельности. Если припомним, то именно такое чистое отрицание, прибавленное к чистому и абсолютному числу, превращало его в отрицательное число.
174
В рукописи: отрицательное.
Теперь посмотрим, что вносит в изучаемый нами иррациональный синтез вторая категория — категория дробности. Дробность тоже нельзя понимать чисто счетно и количественно. Будем все время помнить, что мы занимаемся здесь не математикой, но философией математики и нас интересуют здесь не математические операции сами по себе, но их смысл, их трансцендентальная значимость. Последняя всегда сложнее, необычнее, часто удивляет своим оригинальным характером, в то время как сама–то вещь, значимости которой мы доискиваемся, проста, вполне понятна и даже обыденна. Также и в отношении дробности соблюдем нашу обычную позицию смысловой диалектики и не будем соблазняться банальностью и общепонятностью самого факта, который здесь осмысливается. Дробно то, что имеет какое–нибудь внутреннее содержание, не может быть дробным то, что не имеет ничего внутреннего. Кроме того, это внутреннее должно быть здесь противопоставлено самому себе, т. е. оно само должно перейти в инобытие и получить в связи раздельность. Это мы уже хорошо знаем из анализа категории отрицательного числа. Такая характеристика дробности с безусловной необходимостью входит в иррациональность. Но прежде чем ввести эту дробность непосредственно в категорию иррационального числа, необходимо отчетливо представить себе взаимоотношение «отрицания» и «дробности».