Хаос и структура
Шрифт:
Конечно, это понимание мало чем отличается от первого, где фигурирует просто -1. Однако тут есть такое отличие, которым никак нельзя пренебрегать в диалектике. В чем тут дело?
Тут, прежде всего, два момента—умножение положительной единицы на отрицательную и извлечение из этого произведения квадратного корня. От первого способа представления мнимости (-1) этот способ отличается только прибавкой умножения подкоренной отрицательной единицы на положительную. Эта прибавка означает одно из двух (то и другое есть одно и то же): или положительная единица движется (утверждается) в отрицательной области, или отрицательная единица движется в положительной области. И в том и в другом случае подчеркивается двуплановость смысловой образности числа. Отрицательное число само по себе есть сфера идеальная по сравнению с положительным числом, наличие же положительного числа в этой отрицательной области, т. е. различие нового утверждения в сфере чисто смысловой, есть, конечно, усиление этой смысловой сферы в смысле ее выразительности и фигурности. Точно так же положительное число мыслится как нечто реальное в сравнении с отрицательным числом, наличие же отрицательного числа в этой положительной сфере вносит в нее, несомненно, момент смысловой оформленности и фигурности. Стало быть, оба случая, т.е. (+1)·(—1) и (— 1) ( +1), в одинаковой мере вносят
2. Однако гауссовское представление мнимости гораздо богаче того, что мы только что сказали. Оно богаче не только своим геометризмом (он, конечно, есть нечто прикладное), но и наглядностью] в более тонком, не прямо пространственном смысле. Именно, тут наглядно дано направление мнимости в сравнении с направлениями положительным и отрицательным. В более детальном понимании этого явления здесь три момента. Во–первых, это пересечение мнимой осью оси вещественных точек в нулевой точке. Во–вторых, это перпендикулярное направление мнимой оси в отношении вещественной. В–третьих, это общий смысл происходящего здесь перехода из линейной области в плоскостную [191] .
191
В рукописи: последнее предложение не выделено.
3. Что касается первого момента, то он интересен как новое доказательство того, что мы имеем здесь дело с начерченным контуром. Ведь нуль уже сам по себе есть граница положительных и отрицательных чисел. И тем не менее через эту границу проходит еще одна граница, зависящая теперь уже вовсе не от того, что в точке — нуль, но совсем от другой причины. Величина эта определяется тем, что мы извлекаем квадратный корень из произведения положительной и отрицательной величины. Если с точки зрения нуля, как равновесия между утверждением и отрицанием, здесь был наличен просто факт границы, — потому что ведь и в положительном, и в отрицательном числе речь идет только о факте числа (или о его отсутст–вин), или, как мы говорили, о внешнем инобытии числа, — то с точки зрения операции извлечения корня из отрицательности эта граница дается здесь в своей начерченности, в своей картинности и фигурности. Оба эти момента здесь совпали, и мы имеем в нуле не просто границу вообще, но и очерченно–заполненную границу, начерченную, как бы жирно проведенную границу. Таким образом, мнимая величина, являясь в вещественном смысле нулем (потому–то мнимая ось и проходит через нулевую точку вещественной оси), в более общем смысле отнюдь не является просто нулем. Там, где нет ничего вещественного, оказывается, кое–что может существовать. Может существовать фигура вещи, ибо сама–то фигура вещи отнюдь не есть вещь и не есть даже [нечто] вещественное. Фигура вещи отличается от самой вещи, — иначе мы и не употребляли бы такого слова — «фигура», а просто говорили бы «вещь». Отличаться от чего–нибудь можно только тогда, когда отличное не есть то, от чего оно отлично, — иначе не осуществилось бы и само отличное. Итак, фигура вещи (а тем более числа) — невещественна, в вещественном смысле она—нуль. Без посредства вещества она уже есть нечто, некое самостоятельное смысловое бытие, в котором существует и своя, чисто смысловая, материя, и свои, чисто смысловые, идеи, и свои синтезы того и другого. Это и выражено в гауссовском представлении мнимости.
4. Весьма интересен и второй момент в этом представлении— перпендикулярность линии мнимости к линии вещественных чисел. Что это значит? Перпендикуляр есть геометрическое место точек, равноотстоящих от данной прямой. Другими словами, это есть линия, таковым образом расположенная относительно другой линии. Но эта одинаковость расположения может быть выражена по–разному — смотря по тому, имеется ли в виду параллельность или перпендикулярность. Параллельность есть одинаковость расположения двух линий, когда они берутся в движении; это одинаковость движения (направления) разных линий. Понятие перпендикулярности предполагает обе линии (или по крайней мере одну из них) совершенно неподвижными, а имеется в виду содержание, статическое содержание одной линии и одинаковость расположения к этому другой линии. Перпендикулярность есть одинаковость расположения одной линии к статическому содержанию другой линии.
Перпендикулярность мнимой линии к вещественной, стало быть, означает, что мнимость находится в одинаковом расположении к статическому содержанию вещественной положительности и вещественной отрицательности. Мнимость абсолютно одинаково расположена в отношении положительного и отрицательного содержания. Но это и значит, что мнимость есть граница, начерченная между положительным содержанием числа и содержанием отрицательным. Ибо только граница одинаковым образом расположена как к ограничиваемому, так и к ограничивающему. Окружность круга, например, является абсолютно тою же окружностью, смотреть ли на нее изнутри, с точки зрения положительного содержания круга, или смотреть на нее извне, с точки зрения фона, окружающего данный круг. То самое очертание, которое ограничивает данный кусок пространства, оно же и — вырезывает этот кусок и из окружающего пространства. Вот это–то и зафиксировано в том, что линию мнимостей Iaycc понимает как перпендикулярную к вещественной линии в ее нулевой точке. Только так и можно диалектически понять природу этой мнимой перпендикулярности, если не ограничиваться одной арифметически–счетной точкой зрения.
5. Наконец, третий момент гауссовского геометрического представления мнимых величин заключается в следующем; и этот момент является самым важным, самым принципиальным и решающим. Дело в том простом факте, что если разница положительного и отрицательного на прямой есть не что иное, как разница ее направлений, то разница вещественного и мнимого предполагает выход вообще за пределы прямой и переход в новое измерение. Не будем говорить о перпендикулярности, а сосредоточимся пока вообще на переходе от линии к плоскости. Оказывается, мнимость потребовала в данном случае перехода от линии к плоскости. Что же это значит в философском отношении? Вспомним наши рассуждения о природе пространственного измерения (§ [55]). Мы установили, что всякое пространственное измерение в отношении другого есть нечто алогическое, оно — чистое становление,
Но только ли это? Если бы здесь шла речь просто о переходе в другое измерение, то этот переход сам по себе ровно ничего не говорил бы о мнимости. Получилось бы два вещественных измерения, как обычно бывает, например, при измерении площадей, и больше ничего. Вся сущность вопроса в том и заключается, чтобы перейти от одного измерения в другое без реального перехода в это последнее. Правда, в иррациональном числе мы тоже перешли в другое измерение. Однако, повторяю, там не шла речь о субстанциально новом измерении. Там имелось в виду смысловое же становление внутри данного измерения. В нашем же случае мыслится субстанциальный переход в другие измерения, но реально не совершается, а только мыслится, преображается [192] , или отображается. И там, и здесь, следовательно, дано только мысленное, смысловое представление измерения; но в первом случае (для иррационального числа) это есть смысл внутреннего же смысла данного измерения, во втором же случае (для мнимого числа) это есть смысл субстанциально нового измерения, зафиксированный в данном измерении.
192
В рукописи: предображается.
Ясно, что это возможно только потому, что мнимая величина есть отрицание одного измерения в другом, представление одного измерения при помощи другого. Пусть я имею прямую и хочу говорить о плоскости только при помощи одной прямой, не переходя реально в эту плоскость. Это будет значить, что я оперирую с мнимыми прямыми (или, если угодно, с мнимыми плоскостями). Пусть я имею плоскость и хочу при помощи одних плоскостных категорий рассуждать о пространственном теле — у меня получатся мнимые плоскости. Наконец, я могу пространство четырех измерений изобразить при помощи трехмерного пространства. Тогда у меня получится усложненное трехмерное пространство, в котором будут участвовать мнимые величины.
И сколько бы измерений мы ни брали, всегда, когда зайдет речь о переходе одного пространства на другое, мы должны будем прибегать к помощи мнимых величин. Ясно: мнимая величина есть отображение в данном вещественном измерении какого–нибудь другого измерения. Данная вещественная величина получает здесь некое новое смысловое оформление, получает внутреннюю перспективу, некий смысловой рисунок, фигурность, не зависящую от того, что мы двигались внутри этой величины, ибо, пока мы были там внутри, мы не могли видеть ее внешнего контура и фигуры и самое большое — это могли только двигаться там в разных направлениях, т. е. устанавливать фигурность ее внутреннего содержания, а не фигурность ее вообще. Теперь мы взяли эту внутреннюю представленность величины, отошли от нее на некоторое расстояние и тем самым наметили возможность зафиксировать эту величину уже как таковую, со всей ее величий ]ной фигурностью, на фоне окружающей действительности. Взять внутреннюю представленность величины из самой величины — это значит взять отрицательную единицу. Отойти от величины на некоторое расстояние, чтобы ее видеть, — это значит отличить ее от того, что ее окружает, т. е. перейти в отношении ее в сферу алогического становления, т. е. в новое измерение. И наконец, находясь в ртом новом измерении, обратить взоры на покинутую величину, с тем чтобы ее увидеть, т. е. с тем чтобы определить тот исходный пункт, который лежит в основе самой ее представленности, — это значит извлечь квадратный корень из отрицательной единицы.
Так понимание Гаусса дает нам возможность философски интерпретировать самый смысл перехода от линейного представления к плоскостному, перехода, содержащегося в самом существе мнимой величины.
8. Если коснуться исторической стороны дела, то справедливость заставляет отметить, что уже Валлис имел полное представление о том, что невещественные корни алгебраических уравнений располагаются по прямой, перпендикулярной к линии вещественных корней, так что уже у него мнимая величина была [в виде] среднего пропорционального между положительной и отрицательной величиной [193] . Валлис действовал в конце XVII в.; ровно через столетие, в 1797 г., К. Вессель выпустил на датском языке труд с таким же представлением мнимости, который, однако, стал известен широким кругам только после перевода его на французский язык уже в конце XIX в. [194] Незамеченной прошла и аналогичная работа Арганда [195] в начале XIX в. [196] И только Гаусс в 1831 г. своей знаменитой работой о биквадратных вычетах сделал изложенную геометрическую теорию комплексных чисел популярным достоянием всех [197] . Изучение взглядов Гаусса, однако, не дает ровно никакого философского результата, если ограничиться текстом самого Гаусса. Единственная мысль его заключается только в том, что мнимая величина есть среднее пропорциональное между + 1 и — 1 и что для ее представления необходимо из линейной области выйти в плоскостную. Этот принцип — колоссальной, решающей важности. Но всякому ясно, что он имеет чисто математическое значение; и для философии он не больше как сырой материал. Наша концепция мнимостей, кажется, впервые превращает это гауссовское понимание в чисто философскую теорию.
193
[J. Wallis. Treatise of Algebra both historical and practical. 1685.]
194
[С. Wessel. Essai sur la representation de la direction. Copenhague, 1897.]
195
В рукописи: Арогапа.
196
[J. R. Argand. Essei sur une maniere de representer les quantites imaginaires dans les constructions geometriques. Paris, 1806.]
197
[C. Gauss. Theoria residuorum biquadraticorum. Hottingae, 1832.]