Хаос и структура
Шрифт:
Итак, в дифференциале есть синтез конечного и бесконечного — предельного типа. Но что же дальше? Дифференциал есть, как мы знаем, функция и еще одного переменного, именно — произвольного приращения аргумента. Что это значит? Это значит, что функция предельности, фигурирующая в нем, дана не в чистом виде, но в измененном. И изменение это произошло тут в направлении изменения аргумента. Аргумент потребовал здесь некоего конечного фиксирования этой предельности, т. е. функционирования ее на некотором конечном протяжении. Дифференциал, стало быть, есть очень сложный принцип получения величины: он не только требует соединения конечного и бесконечного по типу предела, но он еще и требует определенной области, где бы это соединение воплощалось. Сама область тут в абсолютном смысле не определена, как и вообще весь дифференциал (да и все инфинитезимальные понятия) есть не абсолютная величина, а только принцип ее возникновения. Но что какая–то вообще определенная область осуществления синтеза должна быть, это тут зафиксировано строго.
Что же такое тогда дифференциал? Если говорить образно и грубо, то это есть: как бы закругленное
209
В рукописи скобок нет.
4. К предыдущему необходимо сделать одно замечание, которое в дальнейшем будет развито у нас в целую теорию, но которое сейчас необходимо сделать только в кратчайшем виде, просто для избежания возникающего здесь недоумения. Дело в том, что данное выше логическое определение дифференциала в своем существе не отличается от определения интеграла. В интеграле тоже есть и конечность, и бесконечность, и предел. Необходимо еще внести специ–фикум, чтобы получился именно дифференциал. Это мы и делаем ниже, в § [12]. Сейчас же только заметим, что различие этих понятий заключается не в их существе, но в их оперативном употреблении, в том, как ими пользуются в вычислениях и измерениях. Различие это метрическое. Если данный математический предмет рассматривается как единица измерения, как элемент более сложной цельности, то это есть дифференциал. Если же тот самый предмет фигурирует как результат изменения, как цельность известного множества элементов, то мы имеем здесь интеграл. Все это развивается у нас ниже, в § [12].
5. Предложенные нами рассуждения пытаются вскрыть логическую природу математического понятия дифференциала. Теперь мы можем обратиться к исследованию другой проблемы, родственной, но не тождественной с этой, именно к исследованию логического коррелята этого понятия. Другими словами, что такое дифференциал в самой логике, т. е. что такое дифференциал понятия? Раньше мы говорили о понятии дифференциала. Теперь стоит вопрос о дифференциале понятия. Вопрос этот, можно сказать, совсем не исследовался. Если о понятии дифференциала всегда шли споры и давались его многочисленные характеристики и если о применении метода бесконечно–малых в логике и философии тоже говорилось достаточно, то, кажется, еще никто не доходил до такой конкретности в постановке вопроса, чтобы прямо указать пальцем, где же именно в логическом мышлении мы имеем производную и где же именно дифференциал. А ведь без этого вся теория философского применения метода бесконечно–малых остается чрезвычайно абстрактной и далекой от живого мышления и ограничивается только намерениями и планами без перехода к достижениям. Надо прямо пальцем ткнуть в тот элемент логического мышления, который является коррелятом математического дифференциала. И этот элемент должен быть достаточно простым и понятным, чем–то совершенно элементарным, как элементарно и само математическое понятие дифференциала, выступающее уже на первых страницах учебников математического анализа. Больше того. Поскольку из всех типов логики формальная логика наиболее распространена и считается наиболее понятной и поскольку формальная логика есть известного рода методический коррелят для всякой другой логики, в том числе и для инфинитезимальной, необходимо найти категорию дифференциала—конечно, в соответствующем методическом преломлении — уже в самой формальной логике. Если дифференциал понятия есть нечто логически реальное, т. е. реальное, а не выдуманное достояние логического мышления, то наиболее простой и доказательный способ обнаружения логической значимости дифференциала — это указание его (в соответствующей формально–логической модификации) именно в самой же формальной логике.
Этим мы и займемся.
6. Тут, очевидно, надо логически расшифровать все то же произведение производной на произвольное приращение независимого переменного.
Что значит «произведение», «умножить»? Умножить данное число — значит повторить его слагаемым столько раз, сколько единиц содержится в множителе, т. е. воспроизвести, осуществить, воплотить так, как того требует множитель.
Так что же тогда такое дифференциал понятия? Ясно, что это есть не что иное, как видовое различие понятия. Ведь видовое различие понятия и есть только конкретное воплощение «основания деления», т. е. такое «основание деления» понятия, которое известным образом материально специфицировано. Почему мы здесь говорим о материальной спецификации? Потому, что с нашей точки зрения, т. е. с точки зрения последовательно проводимой теории отражения диалектического материализма, ни из какого понятия совершенно невозможно вывести его видов, если нет перед этим самих видов. Если бы мы имели только понятие цвета и не знали бы, кроме того, что есть желтый, красный и т. д. цвета, то из одного этого понятия цвета мы совершенно не могли бы вывести желтый, красный и пр. цвета. Чтобы это понятие было специфицировано, т. е. чтобы из него вытекали какие–нибудь видовые понятия, необходимо его соотнести с теми или иными изменениями материального мира; надо из материального мира подыскать те или иные процессы, которые бы ему соответствовали. Если я уже знаю, что такое синий цвет, то я могу подвести его и под общее понятие цвета. Если же я его не знаю, то никакими силами я не смогу дедуцировать его из одного только понятия цвета. Следовательно, «основание деления», имеющееся у нас для данного понятия, должно быть именно материально специфицировано, т. е. должно быть соотнесено с вещами, с тем или другим их отрезком. Тогда мы получаем конкретный результат этого «основания деления». А он и есть видоразличие для данного понятия.
Эта простая и ясная идея до нас нигде не была раскрыта. О том, что такое дифференциал в понятии, не додумался еще ни один логик, даже из тех, которые считали нужным строить инфинитези–мальную логику. Между тем идея эта с очень выгодной стороны конкретизирует математическую категорию дифференциала и дает новое освещение заскорузлой формально–логической категории видового различия. Тут именно становится впервые понятным все глубочайшее различие метода бесконечно малых от метода конечных изоляций, которым пользуется формальная логика. Тут уже не общие рассуждения о том, что мышление есть некое движение, но эта подвижность показана на реальной и элементарной категории формальной логики.
В самом деле, что такое видовое различие в формальной логике? Оно даже и не определяется. Или говорится: это то, чем отличается одно видовое понятие от другого, т. е. тут допускается просто idem per idem. Кроме того, самый процесс наложения видового различия на род мыслится здесь внешне, поверхностно, т. е. никак не мыслится. Знаменитое правило: «Определение происходит через род и видовое различие» — совершенно не входит в то, как именно это «происходит». Видоразличие просто «присоединяется», «прибавляется» к роду, и — кончено. Считать это разъяснением того, как логически возникает определение понятия, совершенно невозможно. Что же вместо этого дает нам категория дифференциала?
Если видоразличие понимать как дифференциал, то это прежде всего погружает определение понятия в сплошной поток, в непрерывное становление. Чтобы видоразличие стало дифференциалом, необходимо и самому понятию, о дифференциале которого мы говорили, находиться в процессе непрерывного становления, и основанию деления этого понятия быть пределом для бесконечного количества конкретных форм этого деления. Из этого сплошного потока конкретного функционирования «основания деления» должен быть вырезан тот или иной «участок», «отрезок», «кусок». И вот этот–то смысловой участок, или область действия, принципа дробления понятия и есть дифференциал этого понятия, видоразличие данного понятия. Формально–логическое, неподвижное, ото всего изолированное видовое различие надо погрузить в непрестанный поток изменения: непрерывно меняется определяемое понятие, непрерывно меняется самое направление этого изменения (производная), непрерывно меняется результат этого изменения, или определения.
Взятый в известных границах, результат этого определения тоже внутри себя непрерывно наплывает. Он–то и есть дифференциал.
Синий как видоразличие для какого–нибудь понятия (напр., для «карандаша», «обоев», «костюма», «цветка»), если это видоразличие понимать как дифференциал, предполагает: 1) сплошное изменение данного понятия (всех этих «карандашей», «обоев» и пр.), т.е. «приращение функции»; 2) определенное направление этого изменения, т. е. «производную», или «цвет вообще»; 3) бесконечный перелив и непрерывное становление величин, подпадающих под это направление, «приближенные значения пределопроизводной», или весь непрерывный цветовой спектр, и, наконец, 4) вырезку, выемку, отрезок, область, запруду, конечное протяжение некоторой области из этого становления, определяемого производной — цветом, т.е. синеву определенного и конкретного типа (ибо синих цветов, если принять во внимание все их оттенки, тоже целая бесконечность).