Хаос и структура
Шрифт:
8. В заключение нашего исследования логической природы дифференциала приведем геометрическое истолкование дифференциала, которое с большей наглядностью и выпуклостью оправдывает выставленную нами логическую теорию.
Вспомним наш чертеж на стр. 651. Пусть точка имеет своими координатами и у. Тогда абсциссой для М' будет + и, следовательно, отрезок MQ = x. Отрезок же QM' =f(x + x)—f(x) = y. Проведя касательную к кривой в точке до встречи ее с ординатой точки М' в точке Т, мы имеем в прямоугольном треугольнике MQT:
TQ = MQ tg<TMQ.
И поскольку тангенс угла касательной с осью абсцисс есть не что иное, как производная, то
TQ=f(x) — x = dy,
т.е. отрезок TQ есть дифференциал dy функции y=f(x). И таким образом, часть МТ отрезка M'Q, не хватающая до полного приращения функции, есть то самое произведение х, которое раньше мы получили аналитически.
Это геометрическое рассуждение весьма наглядно демонстрирует нам то, что мы выше сказали о логической сущности дифференциала. Дифференциал выступает здесь в виде невинного отрезка TQ.
Что значит пересечение? Пересекаться в той или иной точке — значит отождествляться в этой точке. Что значит отождествляться нашей касательной с ординатой точки Если в мы имеем желтый цвет и по направлению к М' он меняется, то что значит, что желтый цвет отождествился с цветом вообще (ибо касательная указывает на производную, а производная, согласно принятой у нас интерпретации, указывает на «цвет вообще»)? Если желтый цвет стал цветом вообще, это значит, он перестал быть именно желтым цветом. Значит, в точке желтый цвет закончился как желтый. В течение отрезка QT он менялся, т.е. он становился все менее и менее желтым. И вот в точке он перестал быть желтым и начал быть зеленым. Это критическая точка, которая одинаково и желтая и зеленая или, вернее, одинаково не желтая и не зеленая.
Но цветность по отрезку QM' продолжает развиваться дальше, а именно мы доходим до точки М', где наша ордината пересекается с самой кривой. И опять: так как пересечение в точке есть отождествление в этой точке, то ясно, что в точке М' зеленость в результате непрерывного изменения в течение ТМ' отождествляется с той вещью, которая выражена у нас в виде функции, т.е. в виде соответствующей точки на кривой. А в чем может отождествляться зеленость с листвой? Только в том, что она станет зеленью именно листвы. Так, если определяемое понятие есть листва, а ее видораз–личие зеленость, то ее дифференциал есть зеленость, постепенно нарастающая и взятая во всем своем нарастании как целое, как таковая. Если мы захотели бы взять ее как момент определения данного рода листвы, т. е. вместе с самой листвой, то мы должны были бы также перейти и от зелености вообще к зелености именно листвы, т. е. соединить вид с родом.
Такова простейшая логическая, и в частности формально–логическая, значимость инфинитезимальной категории дифференциала, демонстрированная при помощи самого элементарного геометрического рассуждения.
9. В заключение всего нашего исследования логической природы дифференциала можно еще раз подчеркнуть, что это понятие и живет, и падает вместе с понятием бесконечно–малого, вместе с учением о бесконечном и непрерывном становлении (как и все понятия математического анализа). Употребляя вольное выражение (а эта вольность вполне простительна после предложенных выше напряженных усилий дать точную логическую формулу), дифференциал есть как бы атом бесконечно–малого, как бы бесконечный и непрерывный процесс в виде законченной индивидуальности. Если само бесконечно–малое вообще не есть нечто — ибо это есть только процесс, только само становление, без начала и конца, без середины и вообще не содержащее в себе никаких точек (ибо точка есть нечто совершенно противоположное становлению), — то дифференциал есть ставшее, бесконечно–малое как ставшее, такое бесконечно–малое, которое плещется в твердых и неподвижных берегах.
Стало быть, если и наше мышление, в частности понятие, должно быть взято с точки зрения этого сплошного становления, то дифференциал отражения вещи в мысли есть, следовательно, во–первых, понятие, а во–вторых, не понятие просто, а его бесконечно–малое нарастание, наплывание, становление, которое можно брать и как таковое, в чистом виде, а можно брать и в виде своеобразных атомов, молекул, элементов, индивидуальностей. Поэтому дифференциал мышления есть не столько понятие, сколько нечто понятийное, молекула понятийности. Это сплошное и безраздельное наплывание и становление самой понятийности. Вот эта–то замечательная идея и заставила Энгельса заговорить, как мы выше видели, о «расплавливании затвердевших категорий» в дифференциальном и интегральном исчислении. Дифференциал мышления есть это расплавленное понятие или, точнее, мельчайший сдвиг такого расплавленного понятия, первый, едва отличный от нуля момент этого плавления. Пусть читатель судит сам, имеется ли у него еще какой–нибудь столь же совершенный метод для изображения становления понятий и можно ли пренебречь в логике этим дивным, этим тонким и острым, этим замечательным понятием дифференциала. Безусловная, подлинная стихия чистого становления зафиксирована тут в тончайшем и точнейшем понятии вместо всех этих обывательских пошлостей и размазни, что все течет и все изменяется, не имеющих никакого отношения ни к марксизму, ни к науке вообще.
11. ИНТЕГРАЛ В ЛОГИКЕ
Как мы знаем, интегрирование определяется в математике или в качестве процесса, обратного дифференцированию, или в качестве нахождения предела суммы. В первом смысле интегрирование для нас менее интересно, так как здесь мы имеем дело с прямым обращением того, что у нас было при дифференцировании, так что определение интеграла носит здесь формальный характер. Используем, однако, оба определения.
1. Дифференцирование приводит нас от первообразной функции к производной, а интегрирование—от производной к первообразной. Интеграл функции есть ее первообразная, если
210
В рукописи: непрерывная.
Что значит перейти от производной к первообразной функции? Ведь производная—это, как мы установили, есть принцип деления понятия. Первообразная же функция, о производной которой идет речь, есть само понятие, которое тут делится, или, точнее, первоначальное и неделимое понимание, отражающее вещь. Путем интегрирования мы, следовательно, переходим от принципа деления понятия к самому понятию, от принципа его становления—к нему самому. Если же говорить точно, то мы только сейчас, после интегрирования, можем впервые говорить о понятии, так как до сих пор у нас был только единый и неделимый смысл, единое и неделимое существенное определение вещи. Понятие есть, таким образом, интеграл смысла, ибо оно возникает только после рефлектирования этого смысла вещи с точки зрения изменений самой вещи, т. е. только после перехода его в становление; обратное движение от этого становления смысла к его цельности и неделимости и есть интегрирование, а результат этого перехода от становления к устойчивой цельности, т. е. к ставшему, — это и есть интеграл.
Таким образом, интеграл есть опять–таки соединение конечного и бесконечного, и это соединение опять–таки совершается здесь по типу становления, и в этой общей сфере становления опять–таки выбирается момент предела, т. е. ставшего. Словом, до сих пор мы не делаем ровно никакой разницы с дифференциалом. Это тождество интеграла с дифференциалом надо понять раньше, чем мы будем говорить об их различии. И так как об этом различии у нас будет разговор дальше, то сейчас пока будем всматриваться в то, что такое интеграл и в чем разница между понятием как отвлеченным смыслом и понятием как интегралом. Интегралом в логике является вовсе не то единое и неделимое существенное отражение вещи в мышлении или тот единоцелостный смысл вещи, который еще не перешел в свое становление, в свое дробление и который еще не превратился в законченную совокупность признаков. Реальность и очевидность такого цельного существенного отражения вещи были нашим исходным пунктом. Но это не интеграл. Сделаем к этому некоторые пояснения.
2. Прежде всего, надо отчетливейшим образом представить себе, в чем заключается целостность и неделимость этой первообразной функции, которая — после интегрирования—становится у нас интегралом. Это есть целостность и неделимость с точки зрения непрерывного становления в ином. Это не значит, что смысл этот нерасчленим или неразличим сам в себе. Если мы изобразим эту первообразную функцию в виде соответствующей кривой, то кривая эта сама по себе, конечно, вполне расчленима и различима, ее можно разбивать на какие угодно элементы, и в том числе на непрерывно становящиеся. Ее аналитическое выражение тоже состоит из ряда вполне определенных действий, которые не могут не быть расчленимыми и не могут не быть некоей едино–раздельной структурой. И при всем том необходимо утверждать, что это есть раздельность в себе, т. е. еще пока не рефлектированная раздельность. Когда мы, напр., чертим окружность, мы не сразу и в одно мгновение ее чертим, но проходит некоторое время (1—2—3 секунды или еще больше), покамест подвижной ножкой циркуля мы не придем в исходную точку. Конечно, в связи с этим существует четверть, половина, три четверти окружности и т. д., и все это есть результат того, что окружность в себе разделена, что ее можно как угодно делить, и т. д. Но это есть именно раздельность в себе, без всякого перехода в иное, ибо никакого иного тут и нет, пока мы еще не выбрались из черчения самой окружности. Но вот окружность вычерчена, она воспринимается нами как целое, и она теперь как целое вступает в свое инобытие. Мы можем теперь эту окружность, напр., вращать около ее диаметра — получим шар. Мы можем рассматривать ее как основание того или иного трехмерного тела и получить, напр., конус. Наконец, мы можем, даже оставаясь в пределах самой окружности, но теперь владея ею уже как целым, все же характеризовать ее заново, т. е. так, как было для нас невозможным до получения цельной окружности. Мы, напр., теперь можем вычислить длину окружности или определить отношение диаметра к длине окружности, определить площадь соответствующего круга и вообще дать то, что называется геометрией круга и окружности. Все это предполагает, что сама окружность уже есть, и все это предполагает, что окружность рассматривается теперь уже извне, как нечто целое и готовое.