Хаос и структура
Шрифт:
Точно так же и наше алогическое становление — пока оставалось безграничным и неоформленным, оно оставалось все еще не осуществленным, не положенным, все еще, строго говоря, лишенным возможности находиться в дроблении — раздельности. Правда, мы уже заговорили о наличии скученного множества становящихся точек, но будем помнить, что 1) это стало возможно только благодаря введению принципа гипостазирования (или развернутого утверждения) в стадию чистого становления. Сделали мы это, однако, не в целях окончательного ответа на поставленный вопрос, но в целях постепенного приближения к этому ответу. Получивши становление как синтез бытия и инобытия, мы стали полагать и утверждать само становление и на первых порах констатировали это утверждение на протяжении самого становления, внутри его развертывающейся массы и оставили в стороне становление в целом. Тем не менее последняя диалектическая ступень в одинаковой мере необходима и как принцип, заложенный уже в указанном частичном гипостазировании (если положено внутреннее содержание вещи, то должна быть положена и она сама), и как позиция, непосредственно приводящая к категории бесконечности.
а) Становление есть неразличимая и ускользающая сплошность алогического смысла. Мы полагаем теперь само становление, превращаем его самого в некую смысловую субстанцию. Это приводит
b) Необходимо помнить выведенные нами раньше категории целого и дробного числа, чтобы соблюсти правильную перспективу в оценке категории бесконечности. Целое число, в отличие от числа просто, содержит в себе свое внутреннее инобытие. Это инобытие было положено в нем субстанциально, т. е. как такое, вне своих внутренних, уже чисто инобытийных, различий, и, кроме того, оно было отождествлено с самим числом. Целость и есть тождество себя с самим собою; число противопоставляется самому себе и, не переходя ни в какие дальнейшие различия, отождествляется с самим собою. Далее мы перешли к дробному числу. Дробное число тоже базируется на внутреннем инобытии числа, на различии и тождестве его с самим числом. Но здесь берется уже не субстанциальная твердыня и нетронутость внутреннего инобытия, но переход этого инобытия в дальнейшее инобытие, так что подобно тому, как «число вообще» противопоставляет себя своему внутреннему инобытию, так это внутреннее инобытие противопоставляет себя своему собственному внутреннему инобытию. Противопоставить что–нибудь чему–нибудь (например, ему же самому)— значит отличить его от этого «что–нибудь», а отличить что–нибудь — значит дать ему очертание границы и формы; а дать очертание чему–нибудь — значит превратить его в нечто количественное и сообщить ему свойство быть дробимым (принципиально или фактически). Отсюда вывод, что «число вообще», вступая в различие с инобытием (в данном случае со своим же собственным внутренним инобытием), делается принципиально дробимым, т. е. целым, а целое число, вступая в различие с инобытием (т. е. опять–таки со своим же собственным внутренним бытием), рассыпается на различествующие друг от друга моменты, т. е. становится дробным. Но все ли возможности исчерпаны в том инобытии, которое в своем субстанциальном отождествлении с «числом вообще» дало целое число, а в своем расчлененно–инобытийном отождествлении с «числом вообще» дало дробное число?
Этим все возможности еще не исчерпаны. В дробном числе наличен просто переход инобытия в дальнейшее инобытие, и больше ничего. Но кроме такого принципиального перехода необходимо учесть и все разнообразие диалектической картины, возникающей при детализировании этого принципиального перехода. Это не только «переход вообще», но и «переход в частности», и тут–то и кроются новые диалектические структуры.
Прежде всего, 1) в дробном числе совершенно не ставится вопрос, как понимать это инобытие инобытия. Неизвестно (и в дробном числе должно остаться неизвестным), есть ли это становящаяся стихия становления во всей своей неразличимой гуще или только наличие так или иначе различествующих моментов этого становления. Тут только утвержден голый тезис наличия инобытия во внутреннем инобытии числа и вытекающая отсюда дробность и — больше ничего. Но дробность может быть дробностью устойчивой структуры (и в таком случае она есть определенная числовая фигурность), и дробность может быть той, наиболее чистый [155] образец которой мы находим в математическом анализе при операциях с «бесконечно–малым». Эти вопросы в дробном числе не поставлены. Далее, 2) в дробном числе неизвестно, все ли инобытие инобытия имеется в виду или не все. Взявши ряд частей единицы, например дробь
155
В рукописи: частый.
с) Именно обе эти идеи как раз и возникают, как только мы начинаем синтезировать целое число и дробное. Первая идея, идея алогической сплошности и неразличимости становления, возникает тут потому, что в синтез вступают категории, взятые в своем существе, в своем центральном и основном смысле. Поэтому инобытие должно быть здесь взято именно как чистая алогичность становления. На ступени дробного числа мы просто вступали в область инобытия, которая сама по себе не была положена, а только допущена, причем неизвестно, как и откуда она возникает. Беря синтез бытия и инобытия, мы должны положить и инобытие (а не только одно бытие), а это значит, что должна быть учтена вся алогическая гуща и мощь становления. Без этого момента нет никакой бесконечности, но этот момент внесен в нее как раз фактом синтеза бытия и инобытия, который мыслим только в условии чистого и существенного утверждения как бытия, так и инобытия. Вторая идея, отсутствующая в дробном числе, идея всего, всейности, есть также не что иное, как результат привхождения сюда идеи целого. Все и есть не что иное, как инобытийная восстановленность «целого». Когда я, имея идею чего–нибудь целого, строю из какого–нибудь материала вещь, то, когда она построена, я, пересчитывая то, из чего она построена, должен сказать, что она содержит в себе все части. «Все» есть инобытийный (но полностью и без всяких изъянов данный) коррелят «целого». Это — субстанциально
Понятие бесконечности настолько безнадежно запутано в популярном сознании [156] и настолько отягощено бесчисленными привнесениями, часто не имеющими никакого к нему отношения, что и ряд дальнейших разъяснений и примечаний будет совсем нелишним.
1. а) Из предыдущего исследования с полной ясностью вытекает ответ на вопрос, поставленный нами выше, — о различии между нулем и бесконечностью. Насколько это «ясно» всякому «здоровому» человеку, настолько это различие неясно философу, когда он хочет понять это различие до конца. Предыдущие рассуждения дают вполне достаточный материал для ясного решения этого вопроса. Почему нуль мы трактовали как синтез осуществленности внешнего инобытия числа, а бесконечность трактуем как синтез внутренней осуществленности?
156
В рукописи: единении.
Нуль получается на пути счета, т. е. на пути шествия готового числа в определенном направлении. Это и значит, что природа нуля определяется внешним движением числа, движением по внешнему инобытию. Когда утверждение отдельных этапов числа на пути этого движения переходит в отрицание и между ними — утверждением и отрицанием — устанавливается равновесие, тогда мы и получаем понятие нуля. Совершенно ясно, что на этом пути мы никакой бесконечности получить не можем. Сколько бы мы ни «утверждали» чисел и сколько бы их ни «отрицали», т. е., другими словами, сколько бы мы ни считали, мы никогда не достигнем этим способом бесконечного числа. Значит, центр тяжести переходит здесь с внешней судьбы числа на его внутреннее содержание. Ясно также и то, что бесконечность, будучи внутренним содержанием числа, является, несомненно, раскрытием этого содержания, и притом полным и всецелым раскрытием. Это вполне можно утверждать, даже не вникая во все подробности предложенной выше диалектики. Но тогда с полной необходимостью вытекает еще и тот вывод, что число с таким внутренним содержанием есть нечто синтетическое, т. е. синтез тоже некоего утверждения и некоего отрицания, но уже не в смысле нуля, а в другом смысле. И этот другой смысл всецело только и определяется тем, что здесь мы в атмосфере внутреннего числового содержания, а в случае с нулем вращались только в сфере внешней судьбы чисел.
b) Именно, мы должны утверждать целость и отрицать целость и дать то, что не есть ни то и ни другое, а некий своеобразный внутренний нуль. Утверждая целость числа, мы сохраняем его структурное единство; но, отрицая его, мы расслояем его на неразличимый хаос дологической текучести. И когда уже задаемся вопросом о синтезировании такого утверждения и такого отрицания, то прежнюю структурную целость приходится понимать как неразличимо и безгранично становящуюся, т. е. как бесконечность. Отсюда можно сказать, что бесконечность тоже есть некоторый нуль, но только этот нуль дан тут в своем внутреннем раскрытии. Она так же внутри себя неразличима и не расчленена, как неразличим и нерасчленим и нуль. Но нуль есть внешняя сторона бесконечности, а бесконечность—внутреннее его выявление, внутренне развернутый нуль. Бесконечность, как и нуль, точно так же совмещает в себе утверждение и отрицание. Но нуль есть внешнее тождество утверждения и отрицания, а бесконечность—внутренний смысл этого тождества, внутренно развернутое тождество утверждения и отрицания, существенно и внутренно развернутый нуль.
2. а) Из общей диалектики известна характеристика синтеза как границы. На нуле мы видели это очень отчетливо, потому что даже в ходовой математике нуль трактуется как граница между положительными и отрицательными числами. В отношении бесконечности это не очевидно само собой, и поэтому тут необходимы разъяснения. Бесконечность есть синтез целого и дробного; и, стало быть, необходимо, чтобы она была границей, отделяющей целое число от дробного, границей, оформляющей целое в его полном отличии от частей. Что это значит? Это значит то, что от целого никаким конечным процессом нельзя дойти до частей. Тут имеется в виду, конечно, не просто арифметическая невозможность, потому что арифметически взял да и разделил целую единицу на какие угодно части, никаких трудностей здесь не встречается. Тут имеется в виду невозможность свести самое понятие целого на отдельные части, невозможность по самому смыслу сводить целое на отдельные части. При наличии этой невозможности, что бы мы ни проделывали с целым, мы никогда не получим дробного и частей, потому что эти категории различны между собою чисто качественно. Целое по самому качеству своему есть нечто иное, чем часть, а не только просто по количеству. Так вот, диалектическое место бесконечности и требует того, чтобы между целым и отдельной частью залегал бесконечный процесс приближения целого к этой части, ибо [157] только в бесконечности можно количественно перейти от целого к отдельным частям. В этом смысле и необходимо утверждать, что бесконечность есть граница между целым и дробным.
157
В рукописи: что.
b) Не нужно смущаться, что это очень большая граница. Прежде всего, она настолько же большая, насколько и малая, потому что бесконечность может быть и бесконечно большим числом, и бесконечно малым числом. И целое отстоит от своих частей, во–первых, на бесконечно далеком расстоянии, а во–вторых, на бесконечно малом; можно и без конца трудиться над переходом от части к целому — и никогда не дойти до этого целого; и можно в одно мгновение перейти от целого к части или от части к целому, невзирая ни на какие различия между тем и другим. Кроме же того, если бы расстояние между целым и дробным было только бесконечно большим (а еще в то же время и не бесконечно малым), то и в этом случае бесконечность с полным правом можно было бы назвать границей целого и дробного, ибо бесконечность действительно есть та область, которая является пограничной между целым и частями, между целым и дробным.