Химические и нефтяные аппараты с мешалками
Шрифт:
Метод Релея состоит в том, что в конкретный момент времени находится перемещение точек вала по формулам статической деформации. Для других моментов времени перемещения могут отличаться от выбранного момента времени. Так как действующая на вал сила Р, состоящая из веса груза и сил инерции
__
Рассмотрим по методу Релея колебания консольной балки (вала) с защемленным концом [2,с.73].
р – круговая частота собственных колебаний в этом примере и ниже.
Обобщенное перемещение:
Кинетическая
в этом уравнении квадрат скорости
Кинетическая энергия элемента балки dc:
Уравнение упругой линии:
Минуя выкладки, полная кинетическая энергия системы:
Потенциальная энергия системы:
Уравнение Лагранжа:
В этом уравнении круговая р0 частота:
Статический прогиб на консоли балки:
И
Решение уравнения
– период колебания
– частота
– круговая частота
__
Рассмотрим по методу Релея колебания двухопорной однопролетной балки (вала), нагруженной сосредоточенной силой посередине [2,с.65].
Обобщенное перемещение:
Кинетическая энергия груза:
Уравнение упругой линии:
Интегрируя последовательно:
Прогиб:
Прогиб посередине пролета:
Следовательно,
Как видно, прогибы x и xc являются динамическими прогибами, а не статическими, и имеют переменное значение, зависящее от времени.
Так, формула прогиба
Кинетическая энергия стержня:
Полная кинетическая энергия системы:
Потенциальная энергия системы:
Уравнение Лагранжа:
Эта формула аналогична формуле
Используя этот интеграл находим:
– период:
– частоту
– круговая частота
Если собственную массу балки не учитывать:
Т.е. к массе мешалки необходимо прибавить
__
Рассмотрим по методу Релея колебания двухопорной однопролетной балки (вала), нагруженной сосредоточенной силой в произвольном положении [2,с.70].
Обобщенное перемещение:
Кинетическая энергия груза:
Кинетическая энергия элемента балки dc:
Уравнение изогнутой оси балки (вала):
В точке приложения груза:
При
Потенциальная энергия системы:
Уравнение Лагранжа:
Для статического удлинения k необходим груз: