Чтение онлайн

на главную - закладки

Жанры

Хранители времени. Реконструкция истории Вселенной атом за атомом
Шрифт:

После того как были рассмотрены все возможные источники этой поразительной аномалии, напрашивался только один вывод: по всей видимости, произошло не внезапное изменение скорости седиментации, а внезапное изменение скорости аккреции – иными словами, весь этот лишний Иридий пришел из космоса. Принимая во внимание то, что только в этом слое Иридий был распространен по всему миру, и то, что его концентрация, измеренная в упавших на Землю метеорах, составляла примерно 500 миллиардных долей, исследователи сочли, что прилетевший «виновник» должен был иметь диаметр около 7 км и массу около 300 миллиардов тонн. Зная стандартную относительную скорость между Землей и любым приближающимся астероидом, легко вычислить кинетическую энергию такого столкновения: она составит примерно 100 миллиардов триллионов джоулей, что в 10–20

миллиардов раз больше энергии атомной бомбы, уничтожившей Хиросиму в конце Второй мировой войны. Такое событие, безусловно, должно было отразиться на всем мире, и история о том, как в течение нескольких недель после удара погибла значительная часть всех живых существ на Земле, звучала вполне правдоподобно.

Впрочем, эта гипотеза гибели динозавров все же была спорной. Более того, первым автором статьи, в которой сообщалось об этих результатах, был не Уолтер Альварес, а его отец Луис Альварес, недавно получивший Нобелевскую премию по физике (и проделавший большую работу по опознанию Иридия). Интересно, насколько легко было бы опубликовать статью, если бы не репутация первого автора? Я хорошо помню коллоквиум, на котором мы говорили об этой гипотезе. Луис Альварес провел его осенью 1980 года на физическом факультете Колумбийского университета. Нобелевские лауреаты нашего факультета (все трое) сидели, как обычно, в первом ряду. Вопросы были резкими и агрессивными, и в конце выступления многие из моих коллег вышли, качая головами и как бы говоря: «Разве не печально, как великие умы угасают с возрастом?» (Луису тогда было всего семьдесят.) Мне же, напротив, показалось, что метеорная гипотеза звучит великолепно!

За последние сорок лет доказательств, подтверждавших правоту этой гипотезы, становилось все больше, и наконец их количество стало ошеломляющим. Ее главный конкурент – гипотеза о массивных извержениях вулканов, которые происходили на протяжении миллионов лет и привели к образованию платобазальтов – траппов плато Декан, расположенных на западной окраине Индии. Возможно, извержения действительно оказали долгосрочное воздействие на климат, учитывая большие выбросы CO2, которые, судя по всему, должны были сопровождать такой выброс лавовых потоков, но в том, что смертельным ударом для динозавров стал именно астероид, нет никаких сомнений.

Место столкновения

Когда Альварес и его коллеги выдвинули гипотезу о столкновении, отсутствовало одно важное доказательство: кратер. Астероид размером около 10 км, ударившийся о Землю с ожидаемой скоростью, должен был оставить кратер глубиной не менее 20–30 км и шириной более 160 км. Небесные тела Солнечной системы, лишенные атмосферы и жидкой воды, такие как Луна, Меркурий, Марс и спутники внешних планет, имеют множество кратеров такого размера и даже более широких и глубоких. Но из-за непрестанных эрозионных воздействий воды и ветра – не говоря уже о медленном смещении тектонических плит – кратеры на поверхности Земли остаются незаметными на протяжении очень долгого времени (с геологической точки зрения). Знаменитый ударный кратер к востоку от Флагстаффа, штат Аризона, диаметром менее полутора километров и глубиной 180 м, как полагают, был образован космическим булыжником диаметром около 30 м. Ему примерно 50 000 лет, не больше. Поскольку эрозия и дрейф континентов играли свою роль в тысячу с лишним раз дольше, считалось, что даже гораздо больший кратер, ожидаемый от астероида-убийцы, вряд ли получится найти.

Однако за два года до того, как Уолтер Альварес открыл аномалию Иридия, несколько инженеров, работающих в мексиканской национальной нефтяной компании Pemex, сопоставили карту аномалий магнитного поля, составленную ими в ходе полетов над полуостровом Юкатан, с данными о гравитационных аномалиях6, собранными десятилетиями ранее, и обнаружили, что оба набора данных «очерчивают» идеальный круг – кольцевую структуру диаметром 180 км с центром недалеко от северного побережья Юкатана. Поскольку данные исследования были запатентованы, результат не был опубликован в научной литературе, и потребовалось еще десять лет, прежде чем свидетельства, собранные со всего Карибского бассейна, и керны, пробуренные в скалах Юкатана, позволили однозначно назвать кратер Чикшулуб7 местом рокового события.

Так мы определили, «где» все произошло, но «когда» и «что именно» случилось, еще только предстояло установить. Четыре десятилетия и сотни научных исследований, проведенных в разных точках мира, воссоздали тот судьбоносный день с поразительной точностью.

Датирование события

Дату удара устанавливали при помощи нескольких методов. Один из старейших методов геологического датирования предполагает сравнение пары соотношений изотопов Урана и Свинца. Другие требуют измерять Калий и Аргон, а также Рубидий и Стронций. В каждом случае долгоживущий радиоактивный изотоп распадается на материнское и стабильное дочернее ядро – так называемое радиогенное ядро – и относительное количество каждого из них в образце показывает возраст.

Цирконы – это минералы, содержащие 40-й элемент, Цирконий. Их структура выражается формулой ZrSiO4. Цирконы образуются при высоких температурах в процессе вулканической активности или ударных столкновений. Они необычайно стабильны, а их размеры варьируются от долей миллиметра до сантиметра и более. Важная особенность кристаллизации этих минералов состоит в том, что они легко встраивают в свою кристаллическую структуру атомы Урана, но категорически не приемлют Свинец. А два природных изотопа Урана, 238U и 235U, в ходе многоступенчатых процессов альфа- и бета-распада превращаются в 206Pb и 207Pb соответственно (в последнем случае оба изотопа стабильны).

Рис. 12.1. Конкордия Урана и Свинца. Кривая линия представляет возраст отношений Pb/U, рассчитанный на основе соответствующих периодов полураспада двух изотопов Урана. Прямая линия соответствует точкам измеренных данных для наблюдаемых соотношений, указывая на то, что различные количества радиогенного Свинца утекли из измеренных образцов. Пересечение двух линий отмечает точку отсутствия потери Свинца и, следовательно, реальный возраст

Измерив отношения 235U/207Pb и 238U/206Pb и отобразив их на горизонтальной и вертикальной осях графика, можно получить так называемую конкордию, или кривую времени. Поскольку нам известны периоды полураспада 238U (4,47 миллиарда лет) и 235U (710 миллионов лет), эти соотношения дают уникальный возраст. Например, если взять образец возрастом ровно 1 миллиард лет и начать с 1,0 грамма каждого изотопа Урана (в природе столько не найти, но в целях иллюстрации полезно), можно ожидать, что в образце все еще будет присутствовать ( 1/2 )1/4,47 238U, или 0,857 г, а вместе с этим накопится 0,143 г 206Pb, поэтому соотношение 206Pb/238U составит 0,167. Если бы мы измеряли 235U с его более коротким периодом полураспада, то осталось бы ( 1/2 )1/0,710, или всего 0,377 г, поэтому ожидаемое соотношение составит 1,65 (см. рис. 12.1).

Если часть Свинца со временем вытечет из образца, на конкордии, вопреки ожиданиям, это соотношение не отразится. Поскольку оба изотопа Свинца будут вытекать с одинаковой скоростью (здесь нет химической дискриминации), оба соотношения уменьшатся – количество Свинца будет ниже, чем ожидалось, но количество Урана останется неизменным. Поскольку 238U распадается медленнее, недостающий 206Pb даст более значительный дробный эффект, и измеренные значения окажутся еще ниже конкордии. Для различных образцов циркона, потерявших разное количество Свинца, на одной диаграмме можно построить линию «дискордии», или «несогласованности». Верхняя точка пересечения двух линий позволит оценить истинный возраст выборки.

Поделиться:
Популярные книги

Береги честь смолоду

Вяч Павел
1. Порог Хирург
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Береги честь смолоду

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Идеальный мир для Социопата 5

Сапфир Олег
5. Социопат
Фантастика:
боевая фантастика
рпг
5.50
рейтинг книги
Идеальный мир для Социопата 5

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Лорд Системы 7

Токсик Саша
7. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 7

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII